

HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised Learning of Actions

Anshul Shah¹, Aniket Roy^{1*}, Ketul Shah^{1*}, Shlok Mishra², David Jacobs²³, Anoop Cherian⁴, Rama Chellappa¹

> ¹Johns Hopkins University ²University of Maryland, College Park ³Meta Al ⁴Mitsubishi Electric Research Laboratories *Equal contribution

Skeleton-based action recognition

Model

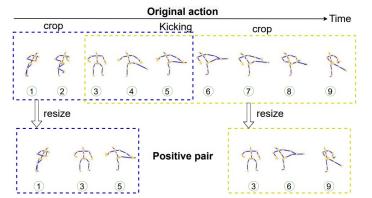
salute

Convey the action succinctly

Reduce the impact of scene and object biases

Reduced privacy concerns

Key motivation of our approach

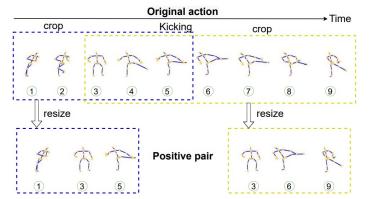


- Data augmentations play a key role in contrastive learning
 - Diversity and strength of augmentation
 - Multi-view / Multi-crop strategy is shown to be helpful
- Crafting plausible augmentations for skeletons is challenging

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021.

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021

Key motivation of our approach



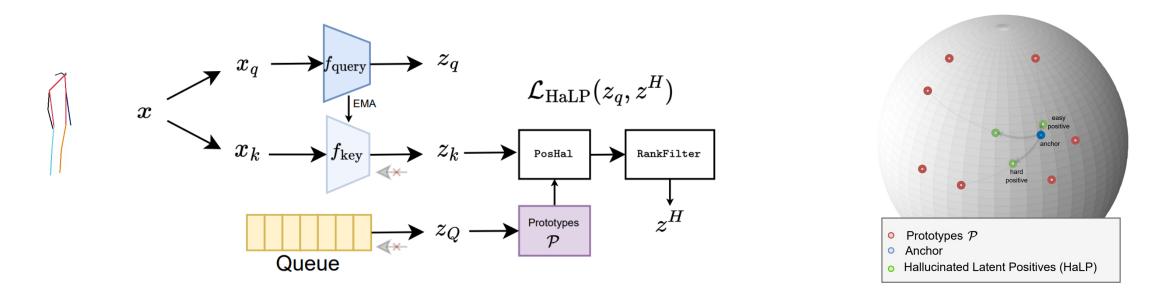
- Data augmentations play a key role in contrastive learning
 - Diversity and strength of augmentation
 - Multi-view / Multi-crop strategy is shown to be helpful
- Crafting plausible augmentations for skeletons is challenging

Can we hallucinate positives in the latent space ?

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021.

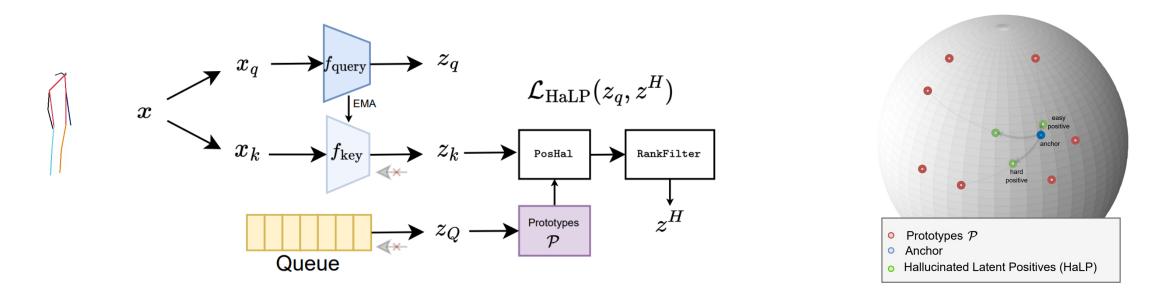
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021

Hallucinate new positives in the input space



- We propose an objective function which can be used to generate positives of varying level of hardness
- Relaxations to the objective allow for closed form making the process very fast
- Final solution involves spherical linear interpolation of the anchor with a randomly chosen data prototype

Hallucinate new positives in the input space



- We propose an objective function which can be used to generate positives of varying level of hardness
- Relaxations to the objective allow for closed form making the process very fast
- Final solution involves spherical linear interpolation of the anchor with a randomly chosen data prototype

Why skeleton-based action recognition ?

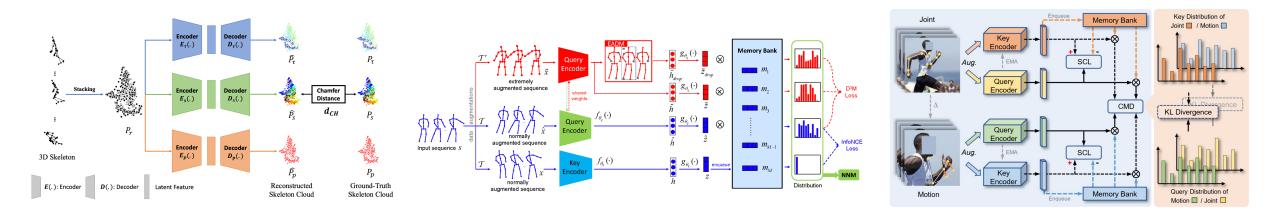
An example from Johansson's experiment

Convey the action succinctly

Reduce the impact of scene and object biases

Visual perception of biological motion and a model for its analysis, Johansson, Gunnar. 1973

Self-supervised skeleton-based action recognition



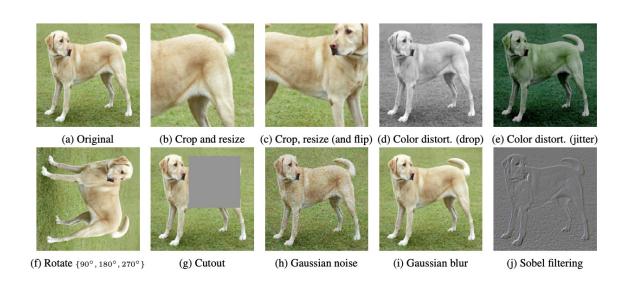
- Various pretext tasks proposed in the past : Skeleton coloring, masked modeling, contrastive learning
- Other research directions : encoders, augmentations, additional modalities

Skeleton cloud colorization for unsupervised 3d action representation learning, Yang et al. 2021

Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition, Guo et al. 2022

CMD: Self-supervised 3D Action Representation Learning with Cross-Modal Mutual Distillation, Mao et al. 2022

Data augmentations are critical



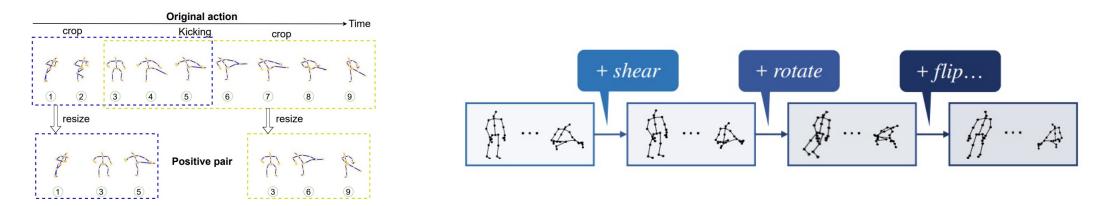
Examples of image data augmentations

	Crop	33.1	33.9	56.3	46.0	39.9	35.0	30.2
	Cutout	32.2	25.6	33.9	40.0	26.5	25.2	22.4
nation	Color	55.8	35.5	18.8	21.0	11.4	16.5	20.8
1st transformation	Sobel	46.2	40.6	20.9	4.0	9.3	6.2	4.2
lst tra	Noise	38.8	25.8	7.5	7.6	9.8	9.8	9.6
	Blur	35.1	25.2	16.6	5.8	9.7	2.6	6.7
	Rotate	30.0	22.5	20.7	4.3	9.7	6.5	2.6
		CLOB	Cutout	Color	sobel	Noise	Blur	Rotate
		2nd transformation						

Composition of transformations is crucial

A simple framework for contrastive learning of visual representations, Chen et al. 2020

Augmentations for skeletons is hard



- Data augmentations require domain knowledge
- Crafting plausible augmentations for skeletons is challenging

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021

Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations, Zhang et al. 2022

Multi-view/Multi-crop strategy is helpful

- Multi-view has been shown to be helpful but is expensive to train
- Difficulty in designing data augmentations for skeletons makes multiview more challenging

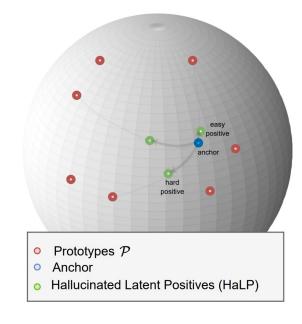
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021

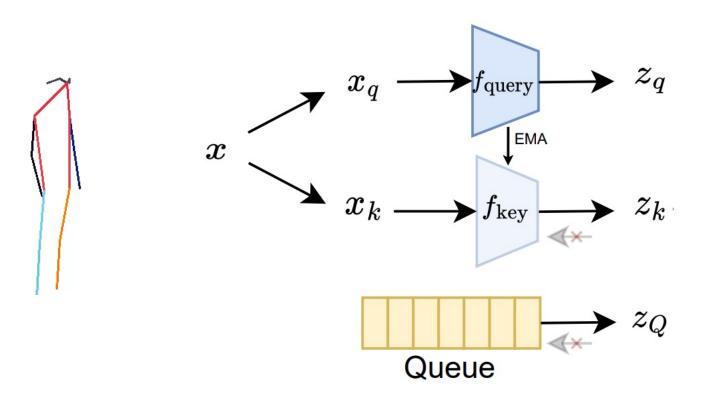
Hallucinating latent positives

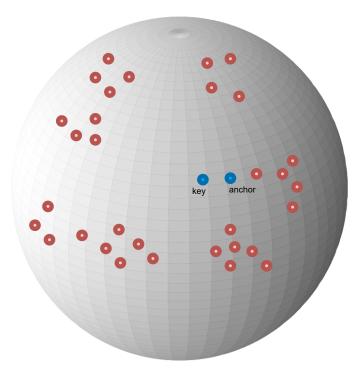
Does not require hand crafting new augmentations

Generating multiple views is easy and inexpensive

Can control for hardness and diversity

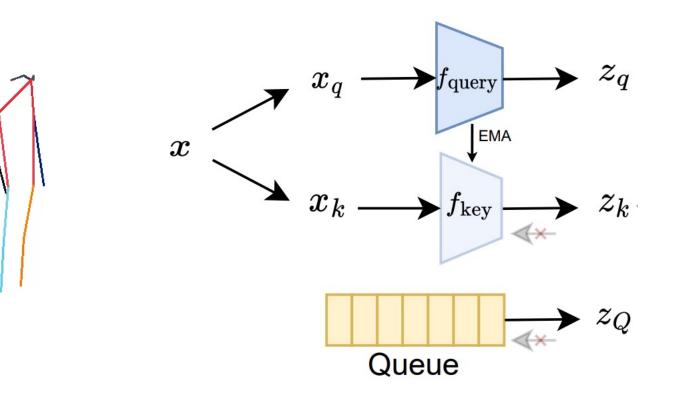


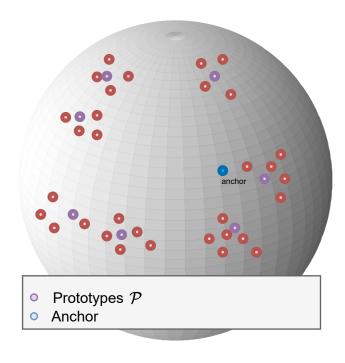




- Desiderata:
 - We want to generate positives of varying hardness which lie far from anchor positives
 - Have the same underlying class semantics
- Key intuition : We can explore the high dimensional space around the anchors to find locations that can be plausibly reached by the encoder

- Clustering on hypersphere to extract prototypes
- Use key as an anchor





• Formally, we define our objective as

$$z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$$

s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \left\{ P_{z_k}^* \right\}$

• Formally, we define our objective as

$$z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$$

s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \{P_{z_k}^*\}$

• Formally, we define our objective as

$$z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$$

s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \{P_{z_k}^*\}$

• Formally, we define our objective as

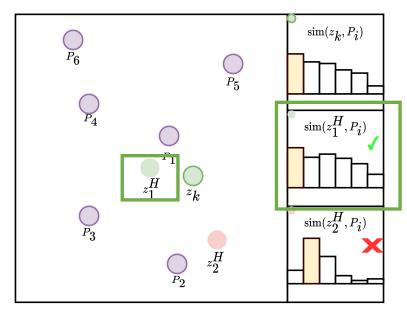
$$\begin{aligned} z^* &= \arg\min_{z\in\mathbb{S}^{D-1}} \ \sin(z,P_{z_k}^*) \\ \text{s.t.} \quad \sin(z,P_{z_k}^*) \geq \sin(z,P), \forall P\in\mathcal{P}\setminus\left\{P_{z_k}^*\right\} \end{aligned}$$

• Formally, we define our objective as

 $\begin{aligned} z^* &= \arg\min_{z\in\mathbb{S}^{D-1}} \, \sin(z,P_{z_k}^*) \\ \text{s.t.} \quad \sin(z,P_{z_k}^*) \geq \sin(z,P), \forall P\in\mathcal{P}\backslash\left\{P_{z_k}^*\right\} \end{aligned}$

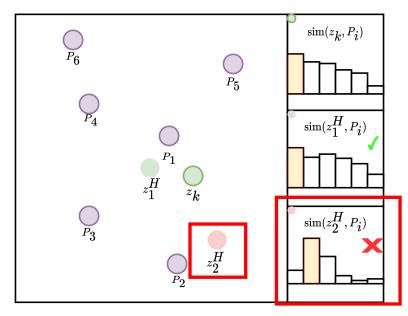
• Formally, we define our objective as

 $z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$ s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \{P_{z_k}^*\}$



• Formally, we define our objective as

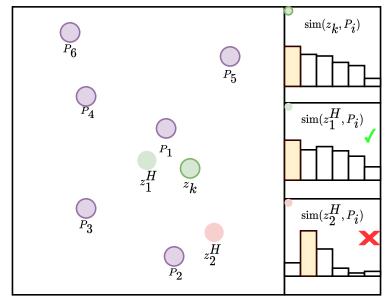
 $z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$ s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \{P_{z_k}^*\}$



• Formally, we define our objective as

 $z^* = \arg\min_{z \in \mathbb{S}^{D-1}} \, \sin(z, P_{z_k}^*)$ s.t. $\sin(z, P_{z_k}^*) \ge \sin(z, P), \forall P \in \mathcal{P} \setminus \{P_{z_k}^*\}$

- We want to generate hard positives which are far from the anchor but have the same closest prototype as the anchor
- Expensive : requires iterative solver



Relaxation 1 : Restrict the search space

• Instead of searching in the whole space, we restrict the search of a new positive in a particular direction

 $z = \operatorname{proj}(z_k + d),$

• We define the direction as that joining the anchor and a randomly selected prototype along the hypersphere

Relaxation 1 : Restrict the search space

• Instead of searching in the whole space, we restrict the search of a new positive in a particular direction

 $z = \operatorname{proj}(z_k + d),$

- We define the direction as that joining the anchor and a randomly selected prototype along the hypersphere
- Manifold-Mixup along the geodesic

$$d(t, P_{\text{sel}}, z_k) = \frac{\sin(1-t)\Omega}{\sin\Omega} z_k + \frac{\sin(t\Omega)}{\sin\Omega} P_{\text{sel}} - z_k,$$

where $t \in [0, 1], \cos\Omega = P_{\text{sel}}^{\top} z_k$ and $\Omega \in [0, \pi]$

Prototypes *P*Anchor

Relaxation 1 : Restrict the search space

• Instead of searching in the whole space, we restrict the search of a new positive in a particular direction

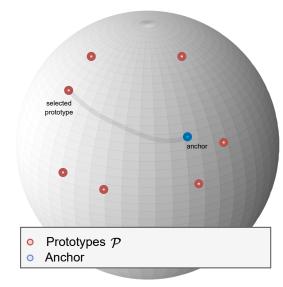
 $z = \operatorname{proj}(z_k + d),$

- We define the direction as that joining the anchor and a randomly selected prototype along the hypersphere
- Manifold-Mixup along the geodesic

$$d(t, P_{\text{sel}}, z_k) = \frac{\sin(1-t)\Omega}{\sin\Omega} z_k + \frac{\sin(t\Omega)}{\sin\Omega} P_{\text{sel}} - z_k,$$

where $t \in [0, 1], \cos\Omega = P_{\text{sel}}^{\top} z_k$ and $\Omega \in [0, \pi]$

$$\begin{aligned} t^* &= \arg\min_{t\in[0,1]} \sin(z,P_{z_k}^*), \text{where} \\ z &= z_k + d(t,P_{\text{sel}},z_k) \\ \text{s.t.} \quad \sin(z,P_{z_k}^*) \geq \sin(z,P_j), P_j \in \mathcal{P} \end{aligned}$$



Relaxation 2

 Instead of solving the ranking objective for all prototypes, just solve it for closest and selected

$$egin{aligned} t^* &= rg\min_{t\in[0,1]}\, \sin(z,P_{z_k}^*), ext{where}\ z &= z_k + d(t,P_{ ext{sel}},z_k)\ ext{s.t.}\quad \sin(z,P_{z_k}^*) \geq \sin(z,P_{ ext{sel}}), \end{aligned}$$

Relaxation 2

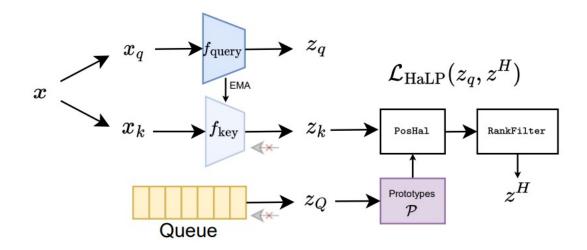
 Instead of solving the ranking objective for all prototypes, just solve it for closest and selected

$$\begin{aligned} t^* &= \arg\min_{t\in[0,1]} \, \sin(z,P_{z_k}^*), \text{where} \\ z &= z_k + d(t,P_{\text{sel}},z_k) \\ \text{s.t.} \quad \sin(z,P_{z_k}^*) \geq \sin(z,P_{\text{sel}}), \end{aligned}$$

• Let's us derive a closed form solution

$$\begin{split} t^* &= \frac{1}{\Omega} \arctan(\frac{\sin\Omega}{\kappa + \cos\Omega}), \text{where} \\ \kappa &= \frac{1 - P_{\text{sel}}^{\top} P_{z_k}^*}{z_k^{\top} (P_{z_k}^* - P_{\text{sel}})}, \end{split}$$

The final approach



$$egin{aligned} \mathcal{L}_{ ext{total}} &= \mathcal{L}_{ ext{CL}} + \mu \mathcal{L}_{ ext{HaLP}} ext{ where} \ \mathcal{L}_{ ext{HaLP}} &= -rac{1}{G_{ ext{filtered}}} \sum_{i}^{G_{ ext{filtered}}} z_q^ op z_i^H / au \end{aligned}$$

$$z_i^H = z_k + d(t_c, P_{\mathrm{sel}}, z_k)$$

 $t_c \sim \mathrm{uniform}(0, \lambda t^*)$

Key implementation details

- Datasets :
 - NTU-60
 - NTU-120
 - PKU-v2
- Encoder : BiGRU
- Works for both unimodal and multi-modal training
- Evaluation protocols :
 - Linear evaluation
 - kNN evaluation
 - Transfer learning
 - Semisupervised Learning

Results : Linear evaluation

Method	NT	NTU-60		NTU-120	
ineurou	x-sub	x-view	x-sub	x-set	x-sub
Additional training mo	dalities d	or encode	rs		
ISC [50]	76.3	85.2	67.1	67.9	36.0
CrosSCLR-B [38]	77.3	85.1	67.1	68.6	41.9
CMD [38]	79.8	86.9	70.3	71.5	43.0
HaLP + CMD	82.1	88.6	72.6	73.1	47.5
Training using only joi	nt				
LongT GAN [64]	39.1	48.1	-	-	26.0
MS ² L [37]	52.6	-	-	-	27.6
P&C [49]	50.7	76.3	42.7	41.7	25.5
AS-CAL [43]	58.5	64.8	48.6	49.2	-
H-Transformer [9]	69.3	72.8	-	-	-
SKT [61]	72.6	77.1	62.6	64.3	-
GL-Transformer [29]	76.3	83.8	66.0	68.7	-
SeBiReNet [41]	-	79.7	-	-	-
AimCLR [18]	74.3	79.7	-	-	-
Baseline	78.0	85.5	69.1	69.8	42.9
HaLP	79.7	86.8	71.1	72.2	43.5

Results : Linear evaluation

Method	NTU-60		NTU-120		PKU-II
Method	x-sub	x-view	x-sub	x-set	x-sub
Additional training mo	dalities	or encode	rs		
ISC [50]	76.3	85.2	67.1	67.9	36.0
CrosSCLR-B [38]	77.3	85.1	67.1	68.6	41.9
CMD [38]	79.8	86.9	70.3	71.5	43.0
HaLP + CMD	82.1	88.6	72.6	73.1	47.5
Training using only joi	nt				
LongT GAN [64]	39.1	48.1	-	-	26.0
MS ² L [37]	52.6	-	-	-	27.6
P&C [49]	50.7	76.3	42.7	41.7	25.5
AS-CAL [43]	58.5	64.8	48.6	49.2	-
H-Transformer [9]	69.3	72.8	-	-	-
SKT [61]	72.6	77.1	62.6	64.3	-
GL-Transformer [29]	76.3	83.8	66.0	68.7	-
SeBiReNet [41]	-	79.7	-	-	-
AimCLR [18]	74.3	79.7	-	-	-
Baseline	78.0	85.5	69.1	69.8	42.9
HaLP	79.7	86.8	71.1	72.2	43.5

Results : Transfer learning and kNN evaluation

Method	To PKU-II					
Wiethou	NTU-60	NTU-120				
Additional training modalities or encoders						
ISC [50]	51.1	52.3				
CrosSCLR-B	54.0	52.8				
CMD	56.0	57.0				
HaLP + CMD	56.6	57.3				
Training using only joint						
LongT GAN [64]	44.8	-				
MS ² L [37]	45.8	-				
Baseline	53.3	53.4				
HaLP	54.8	55.4				

Transfer to PKU-II

Method	NT	NTU-60		NTU-120	
Method	x-sub	x-view	x-sub	x-set	
Additional training	modalit	ies or enc	oders		
ISC [50]	62.5	82.6	50.6	52.3	
CrosSCLR-B	66.1	81.3	52.5	54.9	
CMD	70.6	85.4	58.3	60.9	
HaLP+CMD	71.0	86.4	59.4	61.9	
Additional training	modalit	ies or enc	oders		
LongT GAN [64]	39.1	48.1	31.5	35.5	
P&C [49]	50.7	76.3	39.5	41.8	
Baseline	63.6	82.8	51.7	55.3	
HaLP	65.8	83.6	55.8	59.0	

kNN Evaluation

Analysis: Computational overheads

Method	Time/epoch	Train GPU memory	NTU-60 x-sub
Baseline	1x	1x	78.0
HaLP	1.13x	1x	79. 7
CMD	3x	1.94x	79.8
HaLP+CMD	3.32x	1.94x	82.1

Use with alternative tasks and frameworks

	NCI-1	PROTEINS	DD	MUTAG
GraphCL	77.87 ± 0.41	74.39 ± 0.45	78.62 ± 0.40	86.80 ± 1.3
+HaLP	78.88 ± 0.41	74.65 ± 0.70	79.20 ± 0.60	89.35 ± 1.2

Approach	NTU-60 x-sub
CMD	79.8
CMD+HaLP	82.1
AimCLR	74.3
AimCLR + HaLP	75.2

Graph Representation Learning

HaLP with AimCLR

HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised Learning of Actions

<u>Code</u>

<u>Questions</u>?

Poster Session

Anshul Shah ashah95@jhu.edu

THU-AM-226