

DynamicDet: A Unified Dynamic Architecture for Object Detection

Zhihao Lin Yongtao Wang Jinhe Zhang Xiaojie Chu

Wangxuan Institute of Computer Technology, Peking University

Poster tag: TUE-PM-206

Contact us: linzhihao@stu.pku.edu.cn, wyt@pku.edu.cn Paper: https://arxiv.org/abs/2304.05552

Dynamic neural network

"Easy" image

Object detection

Z. Lin et al. (WICT, PKU)

A unified dynamic architecture for object detection

- Introduction
- Approach
 - Overall architecture
 - Adaptive router
 - Optimization strategy
 - Variable-speed inference
- Experiments
- Conclusion

Introduction

Approach

- Overall architecture
- Adaptive router
- Optimization strategy
- Variable-speed inference
- Experiments
- Conclusion

Dynamic neural network

Dynamic object detection?

- Decoder for image classification task
 - Linear layer
 - light
 - single-scale feature
- Decoder for object detection task
 - Neck and head
 - heavy
 - multi-scale features

Introduction

Approach

- Overall architecture
- Adaptive router
- Optimization strategy
- Variable-speed inference
- Experiments
- Conclusion

Overall architecture

- Two detectors, one router
 - Evolved from CBNet*

* T. Liang et al. CBNet: A composite backbone network architecture for object detection. IEEE TIP, 2022.

Z. Lin et al. (WICT, PKU)

Adaptive router

- Input: multi-scale features $F_1 = \{f_1^{\{1\}}, f_1^{\{2\}}, \dots, f_1^{\{L\}}\}$
- **Output:** predicted difficulty score $\phi \in \mathbb{R}^1$
 - Compress F_1 to \tilde{F}_1

•
$$\tilde{F}_1 = \mathcal{C}\left(\mathcal{P}\left(f_1^{\{1\}}\right), \mathcal{P}\left(f_1^{\{2\}}\right), \dots, \mathcal{P}\left(f_1^{\{L\}}\right)\right).$$

• Map $ilde{F}_1$ to ϕ

•
$$\phi = \sigma(W_2\left(\delta\left(W_1\tilde{F}_1 + b_1\right)\right) + b_2).$$

Optimization strategy

• Step 1, jointly train the cascaded detectors

$$\min_{\Theta_1,\Theta_2} \left(\mathcal{L}_{det}^{\{1\}}(\mathbf{x},\mathbf{y}|\Theta_1) + \mathcal{L}_{det}^{\{2\}}(\mathbf{x},\mathbf{y}|\Theta_2) \right)$$

Optimization strategy

- Step 2, train the adaptive router
 - Freeze the parameters of two detectors
 - Naive methods

• (1)
$$\min_{\Theta_{\mathcal{R}}} ((1-\phi)\mathcal{L}_{det}^{\{1\}}(\mathbf{x},\mathbf{y}|\Theta_1) + \phi\mathcal{L}_{det}^{\{2\}}(\mathbf{x},\mathbf{y}|\Theta_2)),$$

• (2)
$$\min_{\Theta_{\mathcal{R}}} ((1-\phi)\mathcal{L}_{det}^{\{1\}}(\mathbf{x},\mathbf{y}|\Theta_1) + \phi\mathcal{L}_{det}^{\{2\}}(\mathbf{x},\mathbf{y}|\Theta_2) + \lambda\phi).$$

Z. Lin et al. (WICT, PKU)

Optimization strategy

Training loss difference between two detectors

Loss

Optimization strategy

- Adaptive offset
 - To balance the losses of two detectors
 - the median of the loss difference on the training set Δ

$$\begin{array}{l} \min_{\Theta_{\mathcal{R}}} ((1-\phi)(\mathcal{L}_{det}^{\{1\}}(\mathbf{x},\mathbf{y}|\Theta_{1})-\Delta/2) \\ +\phi(\mathcal{L}_{det}^{\{2\}}(\mathbf{x},\mathbf{y}|\Theta_{2})+\Delta/2)) \\ \end{array}$$
Hyperparameter-free!
$$= First Detector \\ = Second Detector \\ = Balanced Point \\ \\ Fasy Medium Hard \\ \end{array}$$

Variable-speed inference

• One dynamic detector for a wide range of trade-offs

Variable-speed inference

- How to achieve the target latency by one dynamic detector?
 - Latency of the first detector lat_1
 - Latency of the cascaded two detectors lat_2
 - Target latency lat_t
 - The difficulty scores of the validation set S_{val}

$$k = rac{lat_t - lat_1}{lat_2 - lat_1}, \quad lat_1 \leq lat_t \leq lat_2,$$

 $au_{val} = ext{percentile}(\mathcal{S}_{val}, k),$
 $au_{test} = au_{val}.$ (these two sets are i.i.d.)

- Introduction
- Approach
 - Overall architecture
 - Adaptive router
 - Optimization strategy
 - Variable-speed inference

• Experiments

Conclusion

State-of-the-art trade-offs

Model	Size	FLOPs	FPS	AP
EAutoDet-X [48]	640	225.3G	41^{\dagger}	49.2
YOLOX-L [9]	640	155.6G	69^{\dagger}	50.1
YOLOX-X [9]	640	281.9G	58^{\dagger}	51.5
YOLOv5-L (r6.2) [11]	640	109.1G	114	49.0
YOLOv5-X (r6.2) [11]	640	205.7G	100	50.9
YOLOv6-M [21]	640	82.2G	109	49.6
YOLOv6-L [21]	640	144.0G	76	52.4
PP-YOLOE+-M [53]	640	49.9G	123^{\dagger}	50.0
PP-YOLOE+-L [53]	640	110.1G	78^{\dagger}	53.3
PP-YOLOE+-X [53]	640	206.6G	45^{\dagger}	54.9
YOLOv7 [45]	640	104.7G	114	51.4
Dy-YOLOv7 / 10	640	112.4G	110	52.1
Dy-YOLOv7 / 50	640	143.2G	96	53.3
Dy-YOLOv7 / 90	640	174.0G	85	53.8
Dy-YOLOv7 / 100	640	181.7G	83	53.9
YOLOv7-X [45]	640	189.9G	105	53.1
Dy-YOLOv7-X / 10	640	201.7G	98	53.3
Dy-YOLOv7-X / 50	640	248.9G	78	54.4
Dy-YOLOv7-X / 90	640	296.1G	65	55.0
Dy-YOLOv7-X / 100	640	307.9G	64	55.0

Model	Size	FLOPs	FPS	AP
YOLOv5-M6 (r6.2) [11]	1280	200.0G	96	51.4
YOLOv5-L6 (r6.2) [11]	1280	445.6G	65	53.8
YOLOv5-X6 (r6.2) [11]	1280	839.2G	39	55.0
YOLOv7-W6 [45]	1280	360.0G	78	54.9
YOLOv7-E6 [45]	1280	515.2G	52	56.0
YOLOv7-D6 [45]	1280	806.8G	41	56.6
YOLOv7-E6E [45]	1280	843.2G	33	56.8
Dy-YOLOv7-W6 / 10	1280	384.2G	74	55.2
Dy-YOLOv7-W6 / 50	1280	480.8G	58	56.1
Dy-YOLOv7-W6 / 90	1280	577.4G	48	56.7
Dy-YOLOv7-W6 / 100	1280	601.6G	46	56.8

¹ The FPS marked with † are from the corresponding papers, and others are measured on the same machine with 1 NVIDIA V100 GPU.

Z. Lin et al. (WICT, PKU)

State-of-the-art trade-offs

Generality for two-stage detectors

Model	FLOPs	FPS	AP_{box}	AP _{mask}
Faster R-CNN ResNet50 [15, 39]	207.1G	23	37.4	-
Faster R-CNN ResNet101 [15,39]	283.1G	18	39.4	-
Dy-Faster R-CNN ResNet50 / 50	245.4G	20	39.5	-
Dy-Faster R-CNN ResNet50 / 90	276.0G	17	40.4	-
Mask R-CNN Swin-T [14, 31]	263.8G	15	46.0	41.6
Mask R-CNN Swin-S [14,31]	353.8G	12	48.2	43.2
Dy-Mask R-CNN Swin-T / 50	310.6G	12	48.7	43.6
Dy-Mask R-CNN Swin-T / 90	348.0G	11	49.9	44.2

Visualization

- Easy: fewer objects, usual camera viewpoint, clean background
- Hard: more small objects, complex scenes, severe occlusion

Z. Lin et al. (WICT, PKU)

21/24

May 29, 2023

- Introduction
- Approach
 - Overall architecture
 - Adaptive router
 - Optimization strategy
 - Variable-speed inference
- Experiments
- Conclusion

Conclusion

- A unified dynamic architecture for object detection, DynamicDet
 - Dynamic architecture to support dynamic inference on detectors
 - Adaptive router to predict the difficulty score of each image and determine the inference route
 - Hyperparameter-free optimization strategy with an adaptive offset to training the dynamic detectors
 - Variable-speed inference strategy for model deployment
 - Achieve <u>a wide range of state-of-the-art accuracy-speed trade-offs</u> with only one dynamic detector

Thanks!

Contact us: linzhihao@stu.pku.edu.cn, wyt@pku.edu.cn Paper: https://arxiv.org/abs/2304.05552