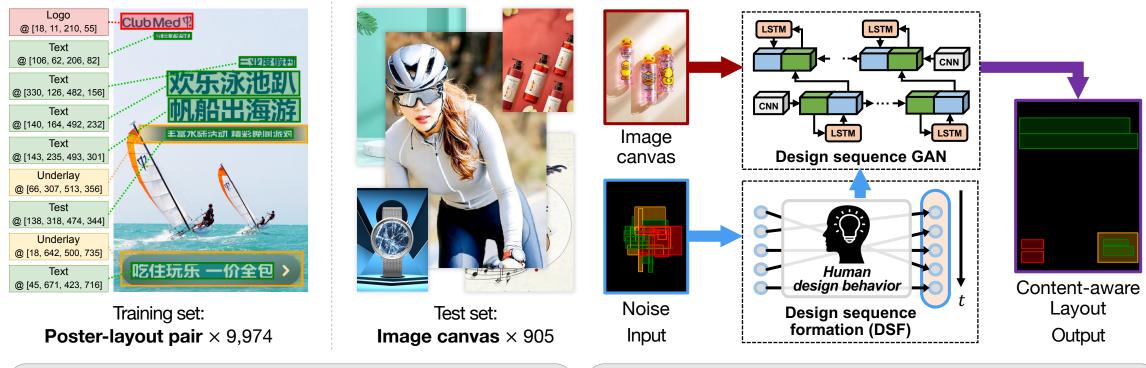


(TUE-PM-181)

PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout

HsiaoYuan Hsu^{1,2}, Xiangteng He^{1,2}, Yuxin Peng^{1,2}, Hao Kong³ and Qing Zhang³ ¹Wangxuan Institute of Computer Technology, Peking University ²National Key Laboratory for Multimedia Information Processing, Peking University ³Meituan

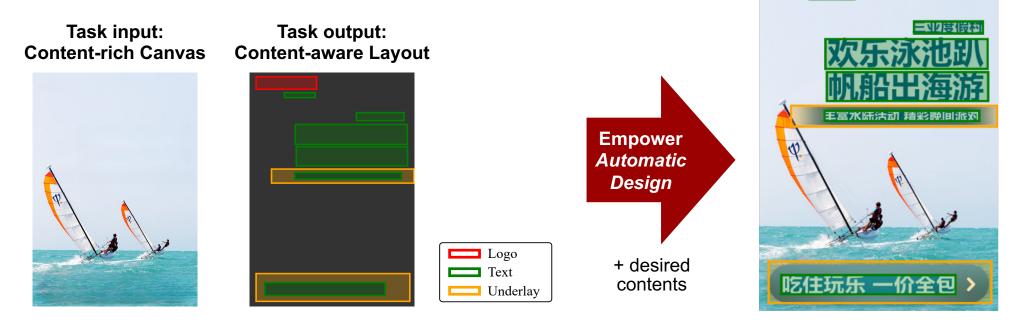


(TUE-PM-181)

PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout

HsiaoYuan Hsu^{1,2}, Xiangteng He^{1,2}, Yuxin Peng^{1,2}, Hao Kong³ and Qing Zhang³ ¹Wangxuan Institute of Computer Technology, Peking University ²National Key Laboratory for Multimedia Information Processing, Peking University ³Meituan

PKU PosterLayout Dataset

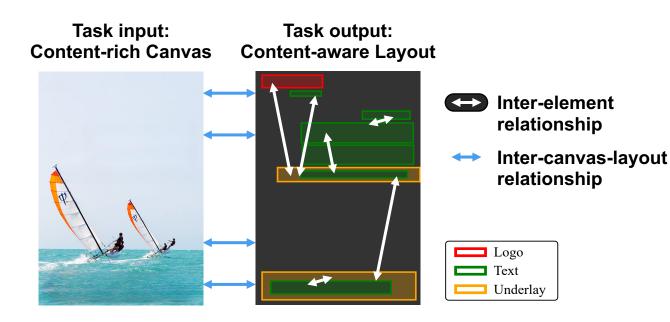

Design Sequence GAN (DS-GAN)

Outline

- Introduction
- A New Benchmark: PKU PosterLayout
- A New Approach: Design Sequence GAN (DS-GAN)
- Experiments
- Conclusion

Background & Application Scenario

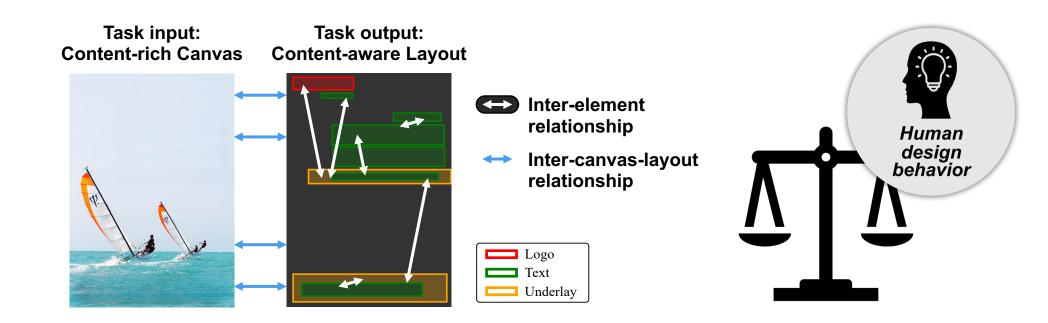
- Content-aware Visual-Textual Presentation Layout
 - Given an **image canvas**, arrange spatial space for *informative or* <u>decorative elements</u>, such as text, logo, and underlay
 - Useful in template-free poster designs


Club Med 4

Challenges & Motivations (1/2)

• Complex inter-element and inter-canvas-layout relationships modeling

- Considering the two relationships in a balanced manner is critical
- Human design behavior can provide a naturally balanced heuristics
- Lack of a **public benchmark** dedicated to this novel task



Challenges & Motivations (2/2)

Complex inter-element and inter-canvas-layout relationships modeling

- Considering the two relationships in a balanced manner is critical
- Human design behavior can provide a naturally balanced heuristics
- Lack of a public benchmark dedicated to this novel task

Outline

Introduction

A New Benchmark: PKU PosterLayout

- A New Approach: Design Sequence GAN (DS-GAN)
- Experiments
- Conclusion

A New Benchmark: PKU PosterLayout

Training set: **Poster-layout pair** × 9,974

Test set: Image canvas × 905

Specialties of PKU PosterLayout (1/3)

i. Domain diversity

- Data were collected from multiple sources, varying in domain, quality, and resolution
 - Shifts in distributions can make the dataset more general

Image sources

(1) https://www.taobao.com/ [1] (2) https://unsplash.com/ (3) https://www.freepik.com/
(4) https://pixabay.com/ (5) https://pngimg.com/ (6) https://www.stickpng.com/

Natural images

E-commerce product images

Blended images

Specialties of PKU PosterLayout (2/3)

ii. Content diversity

• Objects in images are broadly distributed in 9 coarse-grained categories covering most e-commerce products

Food / drinks

Sports / transportation

Fresh produce

Cosmetics / accessories

Clothing

Electronics / office supplies

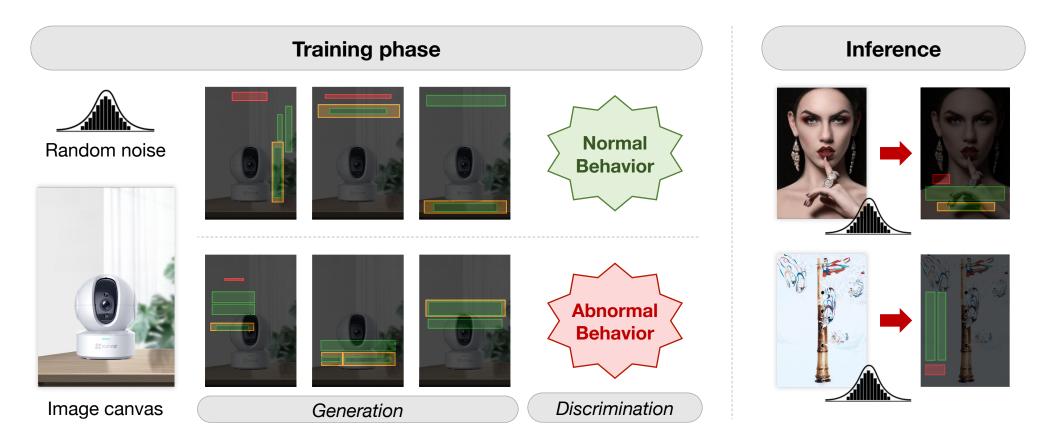
Groceries

Appliances / decor

Specialties of PKU PosterLayout (3/3)

iii. Layout complexity and variety

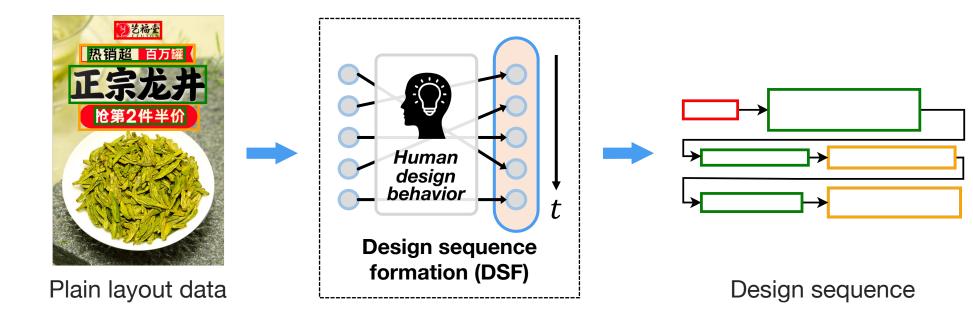
- It is the *first* public dataset containing **complex layouts** with >10 elements
 - Providing more difficulties in modeling the inter-element relationship
 - Capable of supporting extended tasks requiring complex layouts


11

Outline

- Introduction
- A New Benchmark: PKU PosterLayout
- A New Approach: Design Sequence GAN (DS-GAN)
- Experiments
- Conclusion

A New Approach: Design Sequence GAN (DS-GAN)

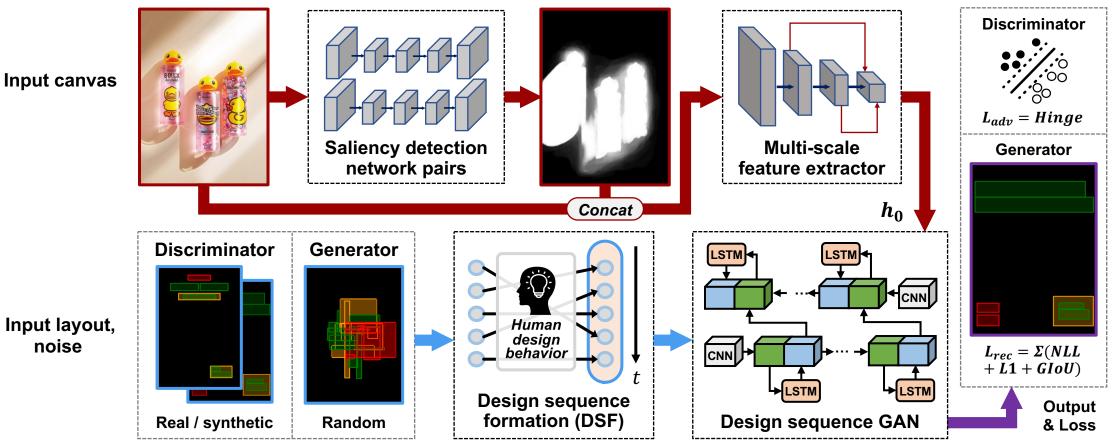

- Abstract design behavior into the order in which the designer places elements on the canvas, named as **design sequence**

Design Sequence GAN (1/3)

i. Design sequence formation (DSF)

- Inspired by Human design behavior
- Converting plain layout data into temporal design sequences
 - Considering (1) category, (2) area, and (3) grouping of elements

Design Sequence GAN (2/3)


ii. Design sequence GAN (DS-GAN)

- Implemented by CNN-LSTM models, triggered by visual features of the canvas to generate image content-aware layouts
- Acting like a human who first observes the image and then starts the design

Design Sequence GAN (3/3)

ii. Design sequence GAN (DS-GAN)

Outline

A B B B

- Introduction
- A New Benchmark: PKU PosterLayout
- A New Approach: Design Sequence GAN (DS-GAN)

• Experiments

Conclusion

Comparisons with State-of-the-art Methods

- Compare our DS-GAN with SOTA methods on PKU PosterLayout and report metrics, including:
 - Graphic metrics: evaluating inter-element relationship

{<u>Val</u>idity of size, <u>Ove</u>rlay, <u>Alignment</u>, <u>Und</u>erlay effectiveness (loose, strict)</u>}

- Content-aware metrics: evaluating inter-canvas-layout relationship

{<u>Uti</u>lization rate of non-salient region, <u>Occ</u>lusion, <u>Rea</u>dability}

	Target	Val ↑	Ove ↓	Ali ↓	Und⊢↑	Und _s ↑	Uti ↑	Occ ↓	Rea ↓
SmartText [2]	Т	-	-	-	-	-	0.0849	0.0912	0.1528
CGL-GAN [3]	V-T	0.7066	0.0605	0.0062	0.8624	0.4043	0.2257	0.1546	0.1715
DS-GAN (Ours)	V-T	0.8788	0.0220	0.0046	0.8315	0.4320	0.2541	0.2088	0.1874

Almost **dominate** graphic metrics

Get a good trade-off between two aspects of metrics

Ablation Study (1/2)

- Gain insight into the effects of
 - CNN-LSTM models: remaining only the last fully connected layers

	Val ↑	Ove ↓	Ali ↓	Und₁ ↑	Und₅ ↑	Uti ↑	Occ ↓	Rea ↓
Without CNN-LSTM	0.6765	0.0888	0.0112	0.0106	0.0000	0.2155	0.2804	0.2015
With CNN-LSTM (DS-GAN)	0.8788	0.0220	0.0046	0.8315	0.4320	0.2541	0.2088	0.1874

Removing the **behavior pattern model** destroys the methodology

Ablation Study (2/2)

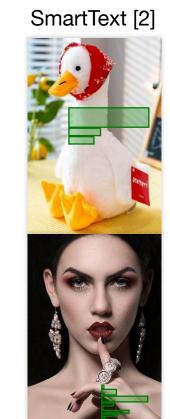
- Gain insight into the effects of
 - CNN-LSTM models: remaining only the last fully connected layers
 - DSF: limiting the maximum sequence length and adopting different formation strategies

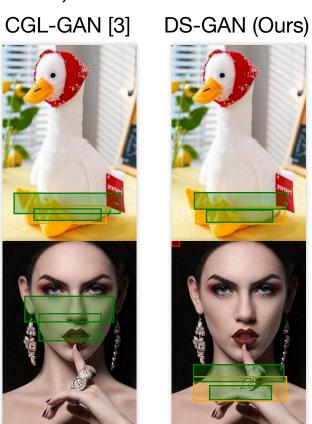
	Val ↑	Ove ↓	Ali ↓	Und₁ ↑	Und₅ ↑	<i>Uti</i> ↑	Occ ↓	Rea ↓	$AE\downarrow$
Random	1.000 (+0.1454)	0.0881 (+0.0666)	0.0062 (+0.0007)	0.7417 (-0.1380)	0.3243 (-0.1499)	0.2240 (-0.0328)	0.2475 (+0.0361)	0.1909 (+0.0035)	0.5730
Geometric	0.9667 (+0.1215)	0.0261 (+0.0026)	0.005 (+0.0004)	0.7849 (-0.0824)	0.4433 (-0.0757)	0.2439 (-0.0170)	0.2482 (+0.0438)	0.1937 (+0.0052)	0.3486
DSF-based (DS-GAN- 8)	0.9572 (+0.0784)	0.0362 (+0.0142)	0.0043 (-0.0003)	0.8850 (+0.0535)	0.5824 (+0.1504)	0.2526 (-0.0015)	0.2341 (+0.0253)	0.1910 (+0.0036)	0.3272

Visualized Results (1/3)

- Our DS-GAN generates more appealing layouts for diverse canvases
 - Actively **utilize** all suitable spaces, retaining some *visually natural* **occlusion**

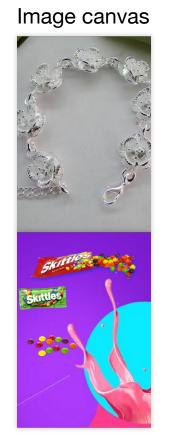
SmartText [2]

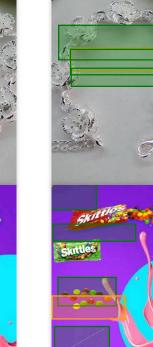

CGL-GAN [3] DS-GAN (Ours)



Visualized Results (2/3)

- Our DS-GAN generates more appealing layouts for diverse canvases
 - Avoid unpleasant overlay, non-alignment, or occlusion





Visualized Results (3/3)

- E K I
- Our DS-GAN generates more appealing layouts for diverse canvases
 - Capable of handling canvases with special-shaped, complex objects

Outline

- Introduction
- A New Benchmark: PKU PosterLayout
- A New Approach: Design Sequence GAN (DS-GAN)
- Experiments
- Conclusion

Conclusion

- This paper devoted to content-aware visual-textual presentation layouts by
 - Construct a new benchmark, *PKU PosterLayout*
 - Propose a new generative approach, **DS-GAN**, inspired by human behavior
 - Composed of DSF and CNN-LSTM-based GAN, both of which are critical
- Several experiments were conducted and verified *PKU PosterLayout*'s usefulness and *DS-GAN*'s effectiveness
- The dataset and code are open-sourced (visit the project page!), hopefully encouraging further research

Reference

- [1] Gangwei Jiang, Shiyao Wang, Tiezheng Ge, Yuning Jiang, Ying Wei, and Defu Lian. Self-supervised text erasing with controllable image synthesis. In Proceedings of the ACM International Conference on Multimedia (ACM MM), pages 1973–1983, 2022.
- [2] Chenhui Li, Peiying Zhang, and Changbo Wang. Harmonious textual layout generation over natural images via deep aesthetics learning. IEEE Transactions on Multimedia (TMM), 2021.
- [3] Min Zhou, Chenchen Xu, Ye Ma, Tiezheng Ge, Yuning Jiang, and Weiwei Xu. Composition-aware graphic layout GAN for visual-textual presentation designs. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 4995–5001, 2022.

(TUE-PM-181)

PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout

HsiaoYuan Hsu^{1,2}, Xiangteng He^{1,2}, Yuxin Peng^{1,2}, Hao Kong³ and Qing Zhang³

¹Wangxuan Institute of Computer Technology, Peking University ²National Key Laboratory for Multimedia Information Processing, Peking University ³Meituan

Thank you!

& Feel free to contact us!!

