Difficulty-based Sampling for Debiased Contrastive Representation Learning

Taeuk Jang¹

Xiaoqian Wang¹

CVPR 2023

Poster Tag: THU-PM-328

Purdue University¹

Overview

Motivation

- Due to unsupervised nature, it is not trivial to find *legitimate* negative samples in contrastive learning, *e.g., false negative problem*.
- Previous works proposed statistical approaches to address the problem such as false negative debiasing and hard negative mining.

Contributions

- Propose a novel debiased contrastive learning method that addresses the problem from a new perspective by incorporating relative difficulty with data bias.
- Introduce triplet loss as bias-amplifying contrastive loss, which serves as an effective surrogate for learning biased representation.
- Theoretically show that the triplet loss amplifies the bias in self-supervised representation learning.

Motivation

Contrastive Learning^[1]: Learn representation that samples with same class are gathered and different class to be apart.

- $\mathbf{x}^a \sim p(\mathbf{x})$: anchor
- $\mathbf{x}^+ \sim p(\mathbf{x}^+ | \mathbf{x})$: positive samples
- $\mathbf{x}^- \sim p(\mathbf{x})$: negative samples

$$\mathbb{E}_{\mathbf{x}^{a},\mathbf{x}^{+},\mathbf{x}^{-}}\left[-\log\frac{e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{+})}}{e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{+})} + \sum_{j=1}^{M}e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{-(j)})}}\right]$$

Finding legitimate negatives is critical

- Negative samples are drawn from the same sample space as anchor.
 - True negative vs False negative ^[2]: negatives can have same class as anchor.
 - Easy negative vs Hard negative ^[3]: hard negative samples are informative.

Both require domain knowledge about distribution τ^- , τ^- and assume label distribution is uniform.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In ICML, 2020.
Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie Jegelka. Debiased contrastive learning. arXiv preprint arXiv:2007.00224, 2020.
Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592, 2020

Motivation

Supervised Learning

- Difficulty of samples are related to data bias. For instance,
 - Texture, color, and background in image classification^[1].
 - Race and gender in face recognition^[2].
- Samples against the data bias are likely to be hard samples.
 - e.g., bird in the water vs. bird in the forest

• Emphasize bias-conflicting samples for better performance and generalization

as they are more informative^[3,4].

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased representations. In ICML, 2020.
Taeuk Jang, Feng Zheng, and Xiaoqian Wang. Constructing a fair classifier with generated fair data. In AAAI, 2021

 ^[3] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debiased representation via disentangled feature augmentation. In NeurIPS, 2021
[4] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information. In ICML, 2021.

- We employ two encoders:
 - Bias-amplifying encoder E_b: intentionally amplify bias that focuses on easy samples.
 - Debiased encoder E_d : emphasize hard negative samples leveraging relative difficulty by referencing representation from E_b .

Learning bias-amplifying representation

• We employ triplet loss^[1] in self-supervised manner to learn bias- amplifying representation.

$$\mathcal{L}_{tri} = \mathbb{E}[||E_b(\mathbf{x}^a) - E_b(\mathbf{x}^+)||_2^2 - ||E_b(\mathbf{x}^a) - E_b(\mathbf{x}^-)||_2^2]$$

• The derivative of triplet loss for optimization:

$$\nabla_{\theta_b} \mathcal{L}_{tri} = \mathbb{E} \bigg[2\Delta^{+\mathsf{T}} \nabla \big(E_b(\mathbf{x}^a) - E_b(\mathbf{x}^+) \big) - 2\Delta^{-\mathsf{T}} \nabla \big(E_b(\mathbf{x}^a) - E_b(\mathbf{x}^-) \big) \bigg],$$

where $\Delta^+ = E_b(\mathbf{x}^a) - E_b(\mathbf{x}^+), \quad \Delta^- = E_b(\mathbf{x}^a) - E_b(\mathbf{x}^-)$

[1] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, 2015.

Learning bias-amplifying representation

$$\nabla_{\theta_b} \mathcal{L}_{tri} = \mathbb{E} \bigg[2\Delta^{+\mathsf{T}} \nabla \big(E_b(\mathbf{x}^a) - E_b(\mathbf{x}^+) \big) - 2\Delta^{-\mathsf{T}} \nabla \big(E_b(\mathbf{x}^a) - E_b(\mathbf{x}^-) \big) \bigg],$$

where $\Delta^+ = E_b(\mathbf{x}^a) - E_b(\mathbf{x}^+), \quad \Delta^- = E_b(\mathbf{x}^a) - E_b(\mathbf{x}^-)$

> The gradient on negative sample is weighted by Δ^- .

- > Samples distinguishable from anchor ($\Delta^- \gg 0$), *i.e., easy negatives*.
- > Samples similar to anchor ($\Delta^- \approx 0$), *i.e.*, hard negatives.
- Triplet loss amplifies bias in the representation.

Learning debiased representation

- We want to learn debiased encoder E_d by referencing biased encoder E_b .
- Weight each negative sample differently by relative difficulty of negative sample \mathbf{x}^- given an anchor \mathbf{x}^a
- Relative difficulty: $w((\mathbf{z}_d^a, \mathbf{z}_d^-), (\mathbf{z}_b^a, \mathbf{z}_b^-)) = 1 + \frac{\tilde{D}(\mathbf{z}^a, \mathbf{z}_d^-)}{\tilde{D}(\mathbf{z}^a, \mathbf{z}_d^-) + \tilde{D}(\mathbf{z}^a, \mathbf{z}_b^-)}$,

where
$$\tilde{D}(\mathbf{z}_i^a, \mathbf{z}_i^-) = \frac{D(\mathbf{z}_i^a, \mathbf{z}_i^-)}{\max_{(\mathbf{x}^a, \mathbf{x}^-) \in \mathcal{B}} D(E_i(\mathbf{x}^a), E_i(\mathbf{x}^-))}$$

Learning debiased representation

Representation by E_b

- $w \in [1,2]$
 - $w \approx 2$ (hard negatives): $\widetilde{D}(\mathbf{z}_b^a, \mathbf{z}_b^-) \ll \widetilde{D}(\mathbf{z}_d^a, \mathbf{z}_d^-)$
 - $w \approx 1$ (easy negatives): $\widetilde{D}(\mathbf{z}_b^a, \mathbf{z}_b^-) \gg \widetilde{D}(\mathbf{z}_d^a, \mathbf{z}_d^-)$
- Emphasize negative samples projected closer to anchor by E_b as

$$\mathbb{E}\bigg[-\log\frac{e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{+})}}{e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{+})}+w(\mathbf{z}^{a},\mathbf{z}_{b}^{-},\mathbf{z}_{d}^{-})e^{E(\mathbf{x}^{a})^{\mathsf{T}}E(\mathbf{x}^{-})}}\bigg]$$

• We can also apply statistical debiasing as DCL^[1] and HCL^[2].

Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie Jegelka. Debiased contrastive learning. arXiv preprint arXiv:2007.00224, 2020.
Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592, 2020

Quantitative Results

		CIFAR-10			CIFAR-100		
Method	Y	ACC (top-1)	ACC (top-5)	ACC (worst)	ACC (top-1)	ACC (top-5)	ACC (worst)
JTT [26]	0	85.67 ± 0.7	99.65 ± 0.2	$72.33 {\pm}~0.5$	61.66 ± 0.6	83.53 ± 0.9	24.00 ± 1.5
SimCLR [4]	×	89.12 ± 0.6	99.74 ± 0.1	75.7 ± 0.4	64.86 ± 0.6	89.67 ± 0.3	20.00 ± 0.2
DCL [<mark>8</mark>]	×	91.66 ± 0.3	99.78 ± 0.1	$81.2 {\pm} 0.2$	68.26 ± 0.3	91.19 ± 0.1	20.00 ± 0.2
HCL [36]	×	91.25 ± 0.2	99.78 ± 0.1	81.5 ± 0.2	68.73 ± 0.4	91.19 ± 0.1	29.00 ± 0.8
WCL (E_d)	×	92.71±0.3	99.84±0.1	83.3±0.8	69.09±0.2	91.63±0.3	31.00±0.7
WCL (E_b)	×	75.61 ± 0.7	98.61 ± 0.4	52.6 ± 0.5	41.61 ± 0.3	69.26 ± 0.2	1.0 ± 0.5

Table 1. Performance evaluation on CIFAR-10 and CIFAR-100.

		Waterbi	rds [37]	CelebA [27]		
Method	Y	ACC (top-1)	ACC (worst)	ACC (top-1)	ACC (worst)	
JTT [26]	0	77.81 ± 2.3	70.00 ± 1.5	$76.83{\pm}1.3$	67.66 ± 0.5	
SimCLR [4]	×	77.80 ± 1.5	0.00	78.61 ± 1.5	44.30 ± 0.7	
DCL [8]	×	65.80 ± 1.7	4.51 ± 1.2	77.12 ± 1.6	44.95 ± 0.3	
HCL [36]	×	69.31 ± 1.2	5.26 ± 1.1	76.13 ± 2.1	52.13 ± 0.8	
WCL (E_d)	×	76.92 ± 0.3	$\textbf{31.58} \pm \textbf{3.5}$	78.11 ± 2.3	$\textbf{57.40} \pm \textbf{1.2}$	
WCL (E_b)	×	73.64 ± 1.4	14.29 ± 1.5	58.84 ± 2.5	39.79 ± 1.3	

Table 2. Performance evaluation on Waterbirds and CelebA dataset. Note thet JTT is supervised learning method. Among the self-supervised learning methods, WCL (ours) achieves the best worst group accuracy with comparable overall performance.

Qualitative Results

• Visualization of top-5 easy/hard negative on CUB dataset

(a) Top-5 easy negatives

(b) Top-5 hard negatives

Thank you for watching and see you by our poster

Difficulty-based Sampling for Debiased Contrastive Representation Learning

Poster Tag: THU-PM-328

Taeuk Jang¹

Xiaoqian Wang¹

Purdue University¹

