Poster Session: TUE-AM-256

Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and Vision-Language Tasks

Hao Li^{*}, Jinguo Zhu^{*}, Xiaohu Jiang^{*}, Xizhou Zhu⁺,

Hongsheng Li, Chun Yuan, Xiaohua Wang, Yu Qiao, Xiaogang Wang, Wenhai Wang, Jifeng Dai

* Co-first Authors

⁺ Corresponding Author

CVPR 2023 Highlight Paper

- Uni-Perceiver v2 : A generalist model for large-scale vision and vision-language tasks
 - Handles a broad range of vision / vision-language tasks without finetuning
 - Outperforms all existing generalist models in both versatility and performance
 - Achieves competitive performance compared with **commonly-recognized task-specific strong baselines**

- Uni-Perceiver v2 : A generalist model for large-scale vision and vision-language tasks
 - Handles a broad range of vision / vision-language tasks without finetuning
 - Outperforms all existing generalist models in both versatility and performance
 - Achieves competitive performance compared with **commonly-recognized task-specific strong baselines**

• Foundation models pretrained on large-scale image-text pairs show strong performance on a series of downstream tasks

- Foundation models pretrained on large-scale image-text pairs show strong performance on a series of downstream tasks
- Foundation models are not general enough they need finetuning

- Foundation models pretrained on large-scale image-text pairs show strong performance on a series of downstream tasks
- Foundation models are not general enough they need finetuning
 - Enough data needs to be collected and labeled for training on each downstream task
 - Task modules (e.g., detection heads) need to be designed and trained
 - Thousands of models for thousands of tasks / real-world scenarios

- Foundation models pretrained on large-scale image-text pairs show strong performance on a series of downstream tasks
- Foundation models are not general enough they need finetuning
 - Enough data needs to be collected and labeled for training on each downstream task
 - Task modules (*e.g.*, detection heads) need to be designed and trained
 - Thousands of models for thousands of tasks / real-world scenarios
- How to design a generalist model capable of handling different tasks without finetuning?

- How to design a generalist model capable of handling different tasks without finetuning?
- Difficulties:
 - Different tasks have different representations and output forms
 - Different tasks may **conflict with each other** with shared parameters
 - Multi-task joint training requires trade-off between tasks, which is tricky

- Difficulty #1: Different tasks have different representations and output forms
- Representation: Encoding images as general region proposals

$$f_{\text{image}}(x) = \text{Concat}\left(\{q_i^{\text{global}}\}_{i=1}^M, \{q_j^{\text{proposal}}\}_{j=1}^N\right)$$

where

$$q_{j}^{\text{proposal}} = q_{j}^{\text{sem}} + \mathcal{B}(q_{j}^{\text{box}}) + \mathcal{M}(q_{j}^{\text{mask}})$$
 $q^{\text{global}} = \text{Concat}\Big(\{ \text{AttnPool}_{i}(\mathcal{F}_{L}) \}_{i=1}^{M'}, \text{ Flatten}(\mathcal{F}_{L}) \Big)$

- Difficulty #1: Different tasks have different representations and output forms
- Representation: Encoding images as general region proposals
- Output: Employing the unified task formulation of Uni-Perceiver

In Uni-Perceiver, different tasks are identified as **different input set** *X* **and candidate output set** *Y*. Given $x \in X$, the task is defined as **finding** $y \in Y$ **with the maximum likelihood** *x*.

- Unified Task Formulation of Uni-Perceiver
 - Image Classification

- Unified Task Formulation of Uni-Perceiver
 - Object Detection

- Unified Task Formulation of Uni-Perceiver
 - Image Captioning

- **Difficulty #2:** Different tasks may **conflict** with shared parameters
- Solution: We employ the Conditional MoE proposed in Uni-Perceiver-MoE

Tasks	COCO Detection	ImageNet-1k Classification	CO Retr	COCO Caption	
Single Task	50.1	76.1	50.0	37.6	30.2
All Tasks	49.8	76.3	46.0	34.7	28.9
w/o Detection	-	76.6 (+0.3)	47.0 (+1.0)	34.6(-0.1)	30.4 (+0.5)
w/o Classification	50.1 (+0.3)	-	51.6 (+5.6)	38.6 (+3.9)	25.9 (-3.0)
w/o Retrieval	49.5 (-0.3)	76.3 (+0.0)	-	-	27.4 (-1.5)
w/o Captioning	49.7 (-0.1)	76.3 (+0.0)	51.2 (+5.2)	38.3 (+3.6)	-
All Tasks w/ MoE	49.9(+0.1)	76.9 (+0.6)	51.3 (+5.3)	38.8 (+4.1)	30.6 (+0.7)

- Difficulty #3: Multi-task joint training requires trade-off between tasks, which is tricky
- Solution: We propose improved optimization strategy for multi-task training
 - Unmixed sampling strategy : All GPUs share the same task in one iteration
 - Increases batch-size, which improves efficiency and performance
 - Reduces the synchronization cost caused by the different iteration time of different tasks
 - Difficulty: the gradients differ significantly between iterations, causing training instability

- Difficulty #3: Multi-task joint training requires trade-off between tasks, which is tricky
- Solution: We propose improved optimization strategy for multi-task training
 - Unmixed sampling strategy : All GPUs share the same task in one iteration
 - Task-Balanced Gradient Normalization: Adaptively normalize the gradients of each task to stabilize the training with unmixed sampling strategy

$$\begin{pmatrix} \mathbf{g}_{t} \leftarrow \nabla L_{t,k} \left(\theta_{t-1} \right) \\ \mathbf{m}_{t} = (1-\beta_{1}) \mathbf{m}_{t-1} + \beta_{1} \mathbf{g}_{t} \\ \mathbf{n}_{t} = (1-\beta_{2}) \mathbf{n}_{t-1} + \beta_{2} \mathbf{g}_{t}^{2} \\ \theta_{t} = \theta_{t-1} - \alpha \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{n}_{t}} + \varepsilon} \end{cases} \Rightarrow \begin{cases} \mathbf{g}_{t} \leftarrow \omega_{k} \frac{\nabla L_{t,k} \left(\theta_{t-1} \right)}{\|\nabla L_{t,k} \left(\theta_{t-1} \right) \|} \\ \mathbf{m}_{t} = (1-\beta_{1}) \mathbf{m}_{t-1} + \frac{\beta_{1}}{s_{k}} \mathbf{g}_{t} \\ \mathbf{n}_{t} = (1-\beta_{2}) \mathbf{n}_{t-1} + \frac{\beta_{2}}{s_{k}} \mathbf{g}_{t}^{2} \\ \theta_{t} = \theta_{t-1} - \alpha \frac{\mathbf{m}_{t}}{\sqrt{\mathbf{n}_{t}} + \varepsilon} \end{cases}$$

Task	Gather	TDCN	COCO	ImageNet-1k	COCO	COCO	
Sampling	Feature	IDUN	Detection	Classification	Retrieval	Caption	
mixed			49.6	76.7	40.1 31.9	27.6	
unmixed			49.2	76.6	39.8 30.9	27.5	
unmixed	\checkmark		49.3	76.8	50.4 37.3	27.6	
unmixed	\checkmark	\checkmark	49.9	76.9	51.3 38.8	30.6	

Task-Balanced Gradient Normalization

• Experiments

Methods	#params	Image Classification	Object Detection	Instance Segmentation	Image Captioning		Text Retrieval		Image Retrieval	
		ImageNet-1k Acc	COCO mAP	COCO mAP	CC B@4)CO CIDEr	COCO R@1	Flickr30k R@1	COCO R@1	Flickr30k R@1
Pix2Seq v2 [5]	132M	_	46.5	38.2	34.9	_	_	-	_	-
UniTab [43]	185M	-	-	-	-	115.8	-	-	-	-
Unified-IO _{LARGE} [23]	776M	71.8	-	-	-	-	-	-	-	-
Unified-IO _{XL} [23]	2.9B	79.1	-	-		122.3	-	-	-	-
Flamingo-3B [1]	3.2B	-	-	-	-	-	65.9	<u>89.3</u>	48.0	<u>79.5</u>
Uni-Perceiver _{BASE} [50]	124M	79.2	-	-	32.0	-	64.9	82.3	50.7	71.1
Uni-Perceiver _{LARGE} [50]	354M	82.7	-	-	35.3	-	67.8	83.7	54.1	74.2
Uni-Perceiver-MoE _{BASE} [49]	167M	80.3	-	-	33.2	-	64.6	82.1	51.6	72.4
Uni-Perceiver-MoE _{LARGE} [49]	505M	<u>83.4</u>	-	-	<u>35.5</u>	-	<u>67.9</u>	83.6	<u>55.3</u>	75.9
Uni-Perceiver-v2 BASE	308M	86.3	58.6	50.6	35.4	116.9	71.8	88.1	55.6	73.8
Uni-Perceiver-v2 _{LARGE}	446M	87.2 (+3.8)	61.9 (+15.4)	53.6 (+15.4)	36.5 (+1.6)	122.5 (+0.2)	75.0 (+7.1)	89.3 (+0.0)	58.5 (+3.2)	79.6 (+0.1)

- Uni-Perceiver v2 outperforms all existing generalist models.
- Uni-Perceiver v2 supports core vision tasks (*e.g.*, object detection / instance segmentation) that existing generalist models do not support.

• Experiments

 Uni-Perceiver v2 achieves competitive performance compared with commonly-recognized task-specific strong baselines that require fine-tuning.

• Uni-Perceiver series

- Uni-Perceiver (CVPR 2022)
 - Proposes the unified task formulation and handles a broad range of tasks with a single model and shared weights
- Uni-Perceiver-MoE (NeurIPS 2022)
 - Proposes conditional MoE that effectively mitigate the task interference in multi-task learning
- Uni-Perceiver v2 (CVPR 2023)
 - Outperforms all existing generalist models in both versatility and performance
 - Achieves competitive performance compared with commonly-recognized task-specific strong methods

Code & Models (in progress) : <u>https://github.com/fundamentalvision/Uni-Perceiver</u>