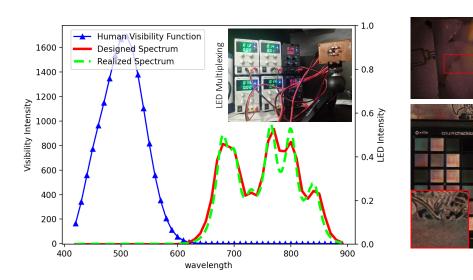
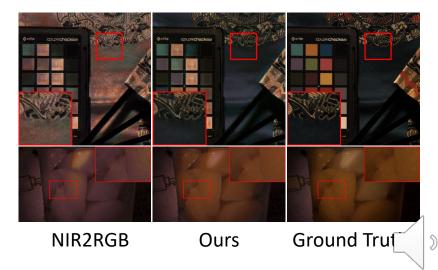
Visibility Constrained Wide-band Illumination Spectrum Design for Seeing-in-the-Dark

Muyao Niu, Zhuoxiao Li, Zhihang Zhong, Yinqiang Zheng*

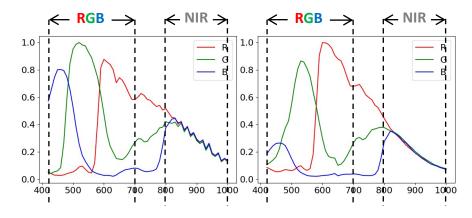
WED-PM-155





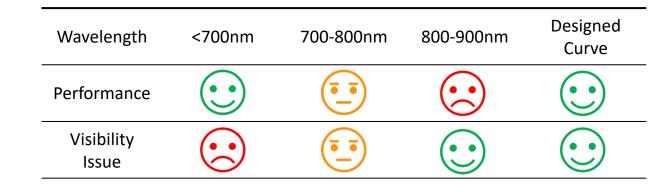
Thumbnail

- In this paper, we try to design the optimal illumination spectrum for Seeing-in-the-dark.
- We propose a paradigm that incorporates the Human Vision System into the design process.
- A Visibility Constrained Spectrum Design (VCSD) model is proposed to formulate and assure the visibility level of certain spectra during the optimization process.
- We also contribute a wide-band hyperspectral image dataset.



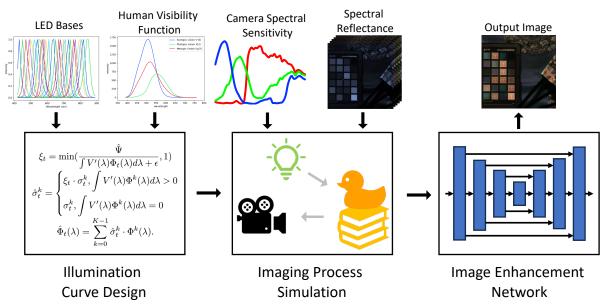
Motivation

- Two threads for Seeing-in-the-dark:
 - Low-light enhancement adopts RGB information but has generalization issues due to unknown illumination.
 - NIR2RGB uses known NIR illuminants but unstable due to intrinsic ambiguity: lack of RGB information.
- The best solution for complete darkness would be using <u>known RGB-NIR illumination</u>.
- However, The illuminant may become visible to human eyes when getting nearer to visible range.



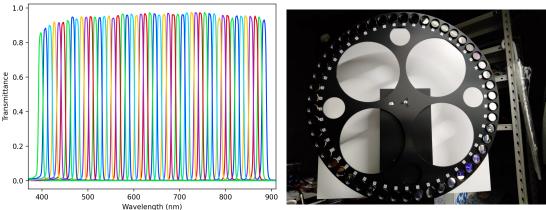
Wavelength Range	<700nm	700-800nm	800-900nm	
Performance	\bigcirc	•••	\bigcirc	
Visibility Issue			\odot	

Motivation


- We want an <u>RGB-NIR curve</u> that cover as much information as possible and <u>does</u> <u>not violate the visibility criteria</u>!
- TO DO THIS, WE:
 - quantify and incorporate the human vision system.
 - formulate the visibility level of certain illumination spectrum during the optimization process.
 - simulate the hyperspectral imaging and the noise process.
 - contribute a wide-band hyperspectral image dataset.

Method

- We propose to introduce the human visibility function and design the optimal illumination spectrum under the visibility constraint.
 - Initialize the Illumination Spectrum via LED basis.
 - Incorporate human vision system to dynamically scale the illumination spectrum according to the threshold.
 - Simulate the imaging process and noise effect.
 - Optimize an image enhancement network.



Dataset

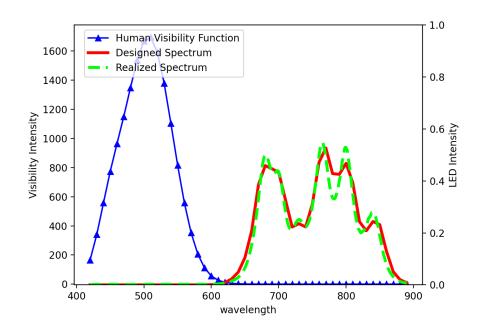
- An Extended Hyperspectral Dataset
 - we contribute a new hyperspectral image dataset to supplement existing HSI datasets in terms of quality and quantity.
 - Hyperspectral images are taken using 50 band-pass filters.
 - The wavelength covers from 400 nm to 890 nm with 10 nm intervals. There are 74 scenes in the dataset, with a resolution of 1936 × 1096.

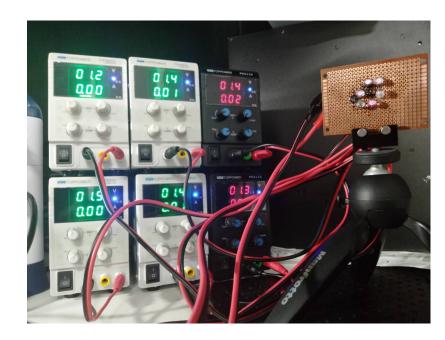
Datasets	ICVL	TokyoTech	IDH	Ours
Resolution	1392×1300	512×512	256×256	1936×1096
Scenes	201	16	112	74
Range	400-1000	420-1000	650-1000	400-890
Interval	1.25	10	10	10

Experiments

- Significant Improvement compared to NIR2RGB
 - Instead of empirically picking up the NIR range, we find the theoretically optimal curve under the visibility constraints.
 - As a result, we significantly robustify the task and achieve superior results on two datasets.

¢ rite co.cochactear		


Datasets	Methods	SSIM	PSNR	LPIPS
	OptNIR	0.7688	22.67	0.1590
Ours	Ours-850	0.8305	<u>24.07</u>	0.1276
Ours	Ours-660	<u>0.8316</u>	23.72	<u>0.1232</u>
	Ours-Full	0.8383	24.12	0.1129
Tokyo Tech	OptNIR	0.7191	19.65	0.1841
	Ours-850	<u>0.7902</u>	<u>21.78</u>	0.1365
	Ours-660	0.7628	21.45	0.1383
	Ours-Full	0.7938	22.08	<u>0.1378</u>


Ours-Full

Experiments

• Designed Optimal Illumination spectrum and the corresponding realization in the physic space

Experiments

- Impact of Visibility Threshold
 - As the value of threshold grows, the restoration results become better since more VIS information is covered.
 - We can trade visibility friendliness for restoration performance by setting different thresholds, making our model applicable to a wide range of application scenarios.

$\widehat{\Psi} = 10$ $\widehat{\Psi} = 250$	$\widehat{\Psi} = 500$	GT	Datasets	Thres.	SSIM	PSNR	LPIPS
				10	0.8383	24.12	0.1129
		12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Ours	250	<u>0.8779</u>	<u>25.64</u>	<u>0.0919</u>
		.0		500	0.9326	29.07	0.0351
0.8	18-	1.8		10	0.7938	22.08	0.1378
	2.4	14	Tokyo Tech	250	<u>0.8495</u>	<u>23.77</u>	<u>0.0920</u>
				500	0.9375	31.85	0.0355

Thanks!

