

NAR-Former: Neural Architecture Representation Learning towards Holistic Attributes Prediction

Yun Yi¹, Haokui Zhang^{*}, Wenze Hu, Nannan Wang^{*}, Xiaoyu Wang

Paper tag: TUE-PM-343

Xi'an, China

Shenzhen, China

Shenzhen, China

*Corresponding authors.

¹This work was done while Yun Yi was an intern at Intellifusion.

Modeling and learning the representation of neural networks can be used to predict their attributes of themselves without running the actual estimation procedures, thus improving the efficiency of network design and deployment.

In this paper, in oder to learn general and reasonable representation of neural network, we propose:

- a simple and effective neural network encoding approach to tokenize both operation and topology information of a neural network node into a sequence;
- a multi-stage fusion transformer to learn feature representations;
- an information flow consistency augmentation and an architecture consistency loss to facilitate efficient model training.

- 1. Background: what is neural network representation learning and why to do?
- 2. Motivation
- 3. Proposed method: NAR-Former
- 4. Experiments: accuracy prediction, latency prediction, ablation study
- 5. Conclusion

Background

NAR-Former: Neural Architecture Representation Learning towards Holistic Attributes Prediction

CVPR 2023

4/16

Motivation

Neural network forms that may need to be encoded in reality:

AR-Former: Neural Architecture Representation Learning towards Holistic Attributes Prediction

VPR 2023

entire deep neural network

5/16

Motivation

The existing mothod that also try to introduce the transformer to neural network representation learning:

Thanks to the powerful capabilities of the transformer, this method achieves promising performance. But, ...

NAR-Former: Neural Architecture Representation Learning towards Holistic Attributes Prediction

Others...

Is there a more gradual and reasonable method ?

Existing methods generate final representations by directly summing or averaging the features of all nodes, which are very concise and popular approaches.

However, these approaches may lose information during the rapid compression process.

How to make better use of the data at hand ?

The amount of training architecture-attribute data pairs has a significant impact on the effectiveness of the model. However, attributes of architectures are usually expensive to acquire.

Proposed Method: NAR-Former

Figure 1. Overview of our NAR-Former. We first encode an input architecture x to a pure sequence T with a proposed tokenizer. A multistage fusion transformer is designed to learn a vector representation e from T. x' (optional) is an augmented architecture of x generated by our information flow consistency augmentation. The bottom part shows the loss function used in this paper. SR_loss is designed for learning more accurate sequence ranking. AC_loss is a proposed architecture consistency loss.

Architecture Encoding Scheme

Figure 2. (a) An example of architecture with 6 operations(N = 6). (b) Conversion table from operation categories to indexes. (c) Encoding scheme of our tokenizer.

Proposed Method: NAR-Former

Multi-Stage Fusion Transformer

Figure 3. Multi-Stage Fusion Transformer. Token sequence T is first transformed into feature map H by standard transformer blocks, and then gradually fused into a one-token feature vector e.

CVPR 2023

Information Flow Consistency Augmentation

Loss Function

NAR-Former: Neural Architecture Representation Learning towards Holistic Attributes Prediction

CVPR 2023

Table 1. Results on NAS-Bench-101 [40](depth= $2\sim7$). Kendall's Tau is calculated using predicted accuracies and ground-truth accuracies. Three different proportions of the whole dataset are used as the training set. "SE" refer to self-evolution proposed by TNASP [23] to improve prediction performance.

		Training Samples					
2.11		0.1%	0.1%	1%	5%		
Backbone	Method	(424)	(424)	(4236)	(21180)		
		Test Samples					
		100	all	all	all		
CNN	ReNAS [39]	0.634	0.657	0.816	-		
LOTM	NAO [24]	0.704	0.666	0.775	-		
LSIM	NAO+SE	0.732	0.680	0.787	-		
	NP [36]	0.710	0.679	0.769			
GCN	NP + SE	0.713	0.684	0.773	-		
	CTNAS [4]	0.751	-		-		
	TNASP [23]	0.752	0.705	0.820	-		
Transformer	TNASP + SE	0.754	0.722	0.820	-		
	NAR-Former	0.801	0.765	0.871	0.891		

14.7%(avg)

Table 2. Results of on NAS-Bench-201 [10](depth=8). Kendall's Tau is calculated using predicted accuracies and ground-truth accuracies. Three different proportions of the whole dataset are used as the training set. "SE" refer to self-evolution proposed by TNASP [23] to improve prediction performance.

		Training Samples				
Backbone	Model	(781) 5%	(1563) 10%	(7812) 50%		
LOTM	NAO [24]	0.522	0.526	1121		
LSIM	NAO + SE	0.529	0.528	-		
CON	NP [36]	0.634	0.646	8.53		
GCN	NP + SE	0.652	0.649	-		
	TNASP [23]	0.689	0.724	-		
Transformer	TNASP + SE	0.690	0.726	-		
	NAR-Former	0.849	0.901	0.947		

16.7%(avg)

Experiments

Table 3. Performance of searched architectures using different NAS algorithms in DARTS [19] space on CIFAR-10 [16]. † denotes using cutout [9] as data augmentation.

Model	Params (M)	Top1 Acc(%)	No. of archs	Search Cost(G·D)
VGG-19 [43]	20.0	95.10	0	0
DenseNet-BC [13]	25.6	96.54	0	0
Swin-S [22]	50	94.17	0	0
Nest-S [42]	38	96.97	0	0
Ransom search	3.2	96.71	-	-
NASNet-A [†] [44]	3.3	97.35	20000	1800
AmoebaNet-A [†] [29]	3.2	96.66	27000	3150
PNAS [18]	3.2	96.59	1160	225
NAONet [24]	28.6	97.02	1000	-
GATES [†] [26]	4.1	97.42	800	-
ENAS [†] [27]	4.6	97.11	-	0.5
DARTS [†] [19]	3.4	97.24	.7.3	4
CTNAS [†] [4]	3.6	97.41	1753	0.3
TNASP [†] [23]	3.7	97.48	1000	0.3
NAR-Former [†]	3.8	97.52	100	0.24

Table 7.Verification of predictor's effectiveness using neuralstructure search experiments on MobileNet space.

Model	ImageNet Top1(%)	MACs	Search Cost (GPU hours)	
OFA []]	76.00	230M	Mohile 40	
NAR-Former	76.36 10.3	6%378M	1.63	
NAR-Former	76.90 10.9	% 571M	setting 2.00	

Table 6. Latency prediction on NNLQP [20]. "Test Model" denotes the model type that used as test set.

Test Model	Method	MAPE↓	ACC(10%)↑
	FLOPs	58.36%	0.05%
EfficientNet	TPU [14]	16.74%	17.00%
depth=242	NNLOP [20]	21.33%	24.65%
	NAR-Former	28.05%	24.08%
	FLOPs	80.41%	0.00%
Nas-Bench-201	TPU [14]	58.94%	2.50%
depth=112~247	NNLOP [20]	8.76%	67.10%
	NAR-Former	4.19%	95.12%

CVPR 2023

Table 5. Ablation study. The "Self_ID" represents the way in which the self position information is combined with other information. The number in parentheses indicates the amount of augmented data. All experiments follow the setting of 1% proportion in Sec. 4.2.

Row	Architencture Encoder	Predictor Type	Self_ID	SR_loss	GI Aug [38] (+3812)	Our Aug (+2421)	AC_loss	Kendall's Tau
1	TNASP [23]	Transformer in [23]	<u> </u>	121			1001	0.8200
2	NP [36]	GCN in [36]	-	-	-	-	-	0.7694
3	Tokenizer	Transformer in [23]	Add	-	-	55	(72)	0.8416
4	Tokenizer	Transformer in [23]	Concat	-	-		-	0.8477
5	Tokenizer	GCN in [36]	Concat	-	-	-	-	0.7953
6	Tokenizer	Multi-stage fusion	Concat	- <u></u>	-	-	1 <u>1</u> 1	0.8481
7	Tokenizer	GCN in [36]	Concat		-	\checkmark	-	0.8035
8	Tokenizer	GCN in [36]	Concat		575	\checkmark	\checkmark	0.8060
9	Tokenizer	Multi-stage fusion	Concat	\checkmark	-	4	12	0.8495
10	Tokenizer	Multi-stage fusion	Concat	\checkmark	\checkmark	-	-	0.8625
11	Tokenizer	Multi-stage fusion	Concat	\checkmark	\checkmark		~	0.8643
12	Tokenizer	Multi-stage fusion	Concat	~	-	\checkmark	-	0.8579
13	Tokenizer	Multi-stage fusion	Concat	\checkmark		\checkmark	\checkmark	0.8712

We propose an effective neural architecture representation learning framework that are consisted of linearly scaling network encoders, a transformers based representation learning model, and an effective model training method with data augmentations and assisted loss functions.

Experiments show that our framework are capable of improving the accuracy of downstream prediction tasks while overcoming scale limitations on input architectures.

Although not the scope of this work, we believe this framework can also be extended for other down stream tasks, such as predicting the quantization loss or searching for the best mixed precision model inference strategies.

Thanks for your listening!

IIP Lab: https://iip-xdu.github.io

Intellifusion: https://www.intellif.com/

Codes link: https://github.com/yuny220/NAR-Former

VPR 2023