

Both Style and Distortion Matter: Dual-Path Unsupervised Domain Adaptation for Panoramic Semantic Segmentation

Xu Zheng², Jinjing Zhu¹, Yexin Liu¹, Zidong Cao¹, Chong Fu^{2,4}, Lin Wang^{1,3} ¹ VLISLab, AI Thrust, HKUST(GZ) ² Northeastern University, ³ Dept. of CSE, HKUST, ⁴Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, NEU, China

Quick Preview

Background

Autonomous driving ^[1]

Scene Understanding

Scene understanding allows the vehicle to detect and track objects, estimate their distance and speed, and predict their behavior to make informed decisions.

Background

High cost Modality Fusion

Multi–sensors system for omnidirectional perception ^[2]

Perspective vs. 360° camera^[3]

The 360° cameras' comprehensive view of the vehicle's surroundings, eliminating blind spots and increasing situational awareness.

Omnidirectional Scene Perception Abilities^[4]

[4] Ma C, et al. DensePASS: Dense Panoramic Segmentation via Unsupervised Domain Adaptation with Attention-Augmented Context Exchange[J]. 2021.

Pinhole image

Panoramic image

- Limited FoV
 - No Distortion
- Sufficient Labels

Unsupervised Domain Adaptation (UDA)

Background

Overall Framework

JUNE 18-22, 2023 CVPR VANCOUVER, CANADA

Cross Projection Training:

Tangent-wise feature contrastive training:

$$L_{fc} = rac{1}{F_i}\sum_{f_+\in F_i} -lograc{exp(f_+/ au)}{exp(f_+/ au)+\sum_f exp(f_-/ au)}$$

Prediction consistency training:

$$\mathcal{L}_{pc} = \sum_{i=1}^{18} f_{E2T}(P_{ei}^p) \log rac{f_{E2T}(P_{ei}^p))}{P_{ti}^t}$$

Intra Projection Training:

Classifier:

Distinguish features (distortion)

Feature Extractor:

Per-class results of the SoTA panoramic image semantic segmentation methods on DensePASS test set.

Method	mIoU	road	sidewalk	building	wall	fense	pole	traffic Light	traffic Sign	tegetation	terrain	sky	Person	rider	car	truck	bus	train	motorcycle	bicycle
ERFNet	16.65	63.59	18.22	47.01	9.45	12.79	17.00	8.12	6.41	34.24	10.15	18.43	4.96	2.31	46.03	3.19	0.59	0.00	8.30	5.55
PASS(ERFNet)	23.66	67.84	28.75	59.69	19.96	29.41	8.26	4.54	8.07	64.96	13.75	33.50	12.87	3.17	48.26	2.17	0.82	0.29	23.76	19.46
Omni-sup(ECANet)	43.02	81.60	19.46	81.00	32.02	39.47	25.54	3.85	17.38	79.01	39.75	94.60	46.39	12.98	81.96	49.25	28.29	0.00	55.36	29.47
P2PDA(Adversarial)	41.99	70.21	30.24	78.44	26.72	28.44	14.02	11.67	5.79	68.54	38.20	85.97	28.14	0.00	70.36	60.49	38.90	77.80	39.85	24.02
PCS	53.83	78.10	46.24	86.24	30.33	45.78	34.04	22.74	13.00	79.98	33.07	93.44	47.69	22.53	79.20	61.59	67.09	83.26	58.68	39.80
Trans4PASS-T †	53.18	78.13	41.19	85.93	29.88	37.02	32.54	21.59	18.94	78.67	45.20	93.88	48.54	16.91	79.58	65.33	55.76	84.63	59.05	37.61
Trans4PASS-S †	55.22	78.38	41.58	86.48	31.54	45.54	33.92	22.96	18.27	79.40	41.07	93.82	48.85	23.36	81.02	67.31	69.53	86.13	60.85	39.09
DPPASS-T(Ours)	55.30	78.74	46.29	87.47	48.62	40.47	35.38	24.97	17.39	79.23	40.85	93.49	52.09	29.40	79.19	58.73	47.24	86.48	66.60	38.11
DPPASS-S(Ours)	56.28	78.99	48.14	87.63	42.12	44.85	34.95	27.38	19.21	78.55	43.08	92.83	55.99	29.10	80.95	61.42	55.68	79.70	70.42	38.40

Huge boost to key targets for autonomous driving

Experiments

[5] Zhang J, Yang K, Ma C, et al. Bending reality: Distortion-aware transformers for adapting to panoramic semantic segmentation, CVPR. 2022.

Ablation

Loss Combination:

TSNE visualization with different loss combinations.

Tangent Projection Size:

		Tange	nt Projection		
Size	96 imes 96	144 imes 144	224×224	384 imes 384	512×512
mIoU	49.98	52.22	55.30	55.17	52.56

Not the bigger / smaller the better

Dual Projection:

Dual Projection (49.53%) vs. Single Projection (45.22%)