Spatial-Frequency Mutual Learning for Face Super-resolution

THU-PM-167

Chenyang Wang, Junjun Jiang*, Zhiwei Zhong and Xianming Liu.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China {wangchy02,jiangjunjun,zhwzhong,csxm}@hit.edu.cn

Overview

- We develop a novel spatial-frequency mutual network (SFMNet) equipped with Fourier transform, which can not only achieve image-size receptive field but also maintain facial structure.
- This is the first method that explores the potential of both spatial and frequency information for face super-resolution.

Overview

• We carefully design a frequency-spatial interaction block to **mutually fuse global frequency**

information and local spatial information.

Overview

Experimental results demonstrate that our method achieves the state-of-the-art

performance in terms of visual results and quantitative metrics.

• We carefully design a frequency-spatial interaction block to **mutually fuse global frequency information and local spatial information**. Face Super-resolution (FSR)

Face super-resolution(FSR):

recovers high-resolution face image from the given low-resolution one.

FSR can:

- improve face image quality and provide pleasing visual experience \geq
- boost downstream tasks, e.g., face recognition, face analysis, etc. \geq

Method	Bicubic	Ma et al.	LapSRN	UR-DGN	SICNN
Identity Similarity	0.2913	0.3823	0.4361	0.3682	0.5978
LFW Acc	97.51%	97.58%	97.46%	97.20%	$\boldsymbol{98.25\%}$
YTF Acc	93.08%	93.26%	93.10%	92.78%	$\mathbf{93.82\%}$

Motivation

♦ Challenges of FSR

- Limited receptive field.
- Failure to maintain facial structure.
- Observation
 - Fourier transform can achieve image-size receptive field.

$$\mathcal{F}(x)(u,v) = rac{1}{\sqrt{HW}} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} oldsymbol{x}(h,w) e^{-2j\pi(rac{h}{H}u+rac{w}{W}v)},$$

> The phase component can well characterize facial structure.

Face images and the reconstructed results by phase component.

Overview of the proposed SFMNet.

We develop a spatial-frequency mutual network (SFMNet) equipped with Fourier transform.
 To the best of our knowledge, this is the first method that explores the potential of both
 spatial and frequency information for face super-resolution.

Overview of the proposed SFMNet.

We develop a spatial-frequency mutual network (SFMNet) equipped with Fourier transform.
 To the best of our knowledge, this is the first method that explores the potential of both
 spatial and frequency information for face super-resolution.

Overview of the proposed SFMNet.

We develop a spatial-frequency mutual network (SFMNet) equipped with Fourier transform.
 To the best of our knowledge, this is the first method that explores the potential of both
 spatial and frequency information for face super-resolution.

Overview of the proposed SFMNet.

• Component: feature extraction layer, L spatial-frequency mutual learning modules (SFMLM), reconstruction layer.

Objective functions:

Overview of the proposed SFMNet.

- $\succ \text{ Pixel-level loss:} \qquad \mathcal{L}_{\text{Pix}} = \left\| \boldsymbol{I}_{\text{Spa}}^{\text{SR}} \boldsymbol{I}_{\text{HR}} \right\|_{1} + \left\| \boldsymbol{I}_{\text{Fre}}^{\text{SR}} \boldsymbol{I}_{\text{HR}} \right\|_{1},$
- $\succ \text{ Frequency-level loss: } \mathcal{L}_{\text{Fre}} = \left\| \mathcal{A}(\boldsymbol{I}_{\text{Fre}}^{\text{SR}}) \mathcal{A}(\boldsymbol{I}_{\text{HR}}) \right\|_{1} + \left\| \mathcal{P}(\boldsymbol{I}_{\text{Fre}}^{\text{SR}}) \mathcal{P}(\boldsymbol{I}_{\text{HR}}) \right\|_{1},$
- $\blacktriangleright \quad \text{Adversarial loss: } \mathcal{L}_{\text{Spa}}^{\text{Adv}} = -log(\mathcal{SD}(\boldsymbol{I}_{\text{Spa}}^{\text{SR}})), \quad \mathcal{L}_{\text{Fre}}^{\text{Adv}} = -log(\mathcal{FD}([\mathcal{A}(\boldsymbol{I}_{\text{Spa}}^{\text{SR}}), \mathcal{P}(\boldsymbol{I}_{\text{Spa}}^{\text{SR}})])),$
- $\succ \quad \text{Perceptual loss:} \quad \mathcal{L}_{\text{Per}} = \left\| \Phi(\boldsymbol{I}_{\text{Spa}}^{\text{SR}}) \Phi(\boldsymbol{I}_{\text{HR}}) \right\|_{1},$

SFMLM

FSIB

Frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right).
FSIB first applies two convolutional layers on spatial and frequency features.

FSIB

Frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right).
Coarse fusion: spatial-frequency cross-attention (SFCA)

- SFCA has two inputs: source information F_s and guidance information F_q
- SFCA uses F_s to generate query Q and use F_g to generate key K and value V Attention $(K, Q, V) = f_{\text{Softmax}}(QK^T/\sqrt{d})V$,
 - Frequency feature and the spatial feature serve as source and guidance for each other.

Frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right).
Effectiveness of SFCA: replace SFCA with Concatenation-Convolution (CC)

	len	He	ebA		
SFCA can improve face super-	SSIM	PSNR	SSIM	PSNR	
resolution	0.8072	27.10	0.8022	27.40	CC
performance.	0.8141	27.22	0.8082	27.56	SFCA
)					

FSIB

Frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right).
Fine fusion: use coarsely fused feature to generate attention map for refinement.

FSIB

Frequency-spatial interaction block (FSIB) (left) and spatial-frequency cross-attention (SFCA) (right).
Effectiveness of FSIB: replace FSIB with concatenation-convolution (CC)

	elen	He	ebA		
FSIB can improve face super-	SSIM	PSNR	SSIM	PSNR	
resolution	0.8079	27.01	0.8033	27.39	CC
performance.	0.8141	27.22	0.8082	27.56	FSIB
					L

Experiments

	CelebA [30]					Helen [25]								
Dataset		$\times 4$			$\times 8$			$\times 4$			$\times 8$		Par	Time
	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM↑	LPIPS↓		
Bicubic	27.48	0.8166	0.1841	23.58	0.6285	0.2692	28.22	0.6628	0.1771	23.88	0.6628	0.2560	-	-
SRCNN [10]	28.04	0.8369	0.1599	23.93	0.6348	0.2559	28.77	0.8730	0.0556	24.27	0.6770	0.2430	19.6k	9.1ms
EDSR [29]	31.45	0.9095	0.0518	26.84	0.7787	0.1159	31.87	0.9286	0.0574	26.60	0.7851	0.1400	3.4M	10.0ms
FSRNet [9]	31.46	0.9084	0.0519	26.66	0.7714	0.1098	31.93	0.9283	0.0543	26.43	0.7799	0.1356	3.2M	53.0ms
DIC [32]	31.53	0.9107	0.0532	27.37	0.8022	0.0920	31.98	0.9303	0.0576	26.94	0.8026	0.1144	20.8M	84.6ms
SPARNet [8]	31.71	0.9129	0.0476	27.42	<u>0.8036</u>	0.0891	31.98	0.9300	0.0592	26.95	0.8029	0.1169	10.0M	45.0ms
SISN [31]	31.88	0.9157	0.0476	27.31	0.7978	0.0998	32.41	0.9351	0.0535	27.08	0.8083	0.1225	8.4M	<u>63.8ms</u>
SFMNet(Ours)	32.01	0.9175	0.0441	27.56	0.8074	<u>0.0869</u>	32.51	0.9362	<u>0.0498</u>	27.22	0.8141	<u>0.1061</u>	8.1M	51.8ms
SFMNet+GAN	30.99	0.8051	0.0291	26.48	0.7662	0.0594	31.54	0.9187	0.0323	26.39	0.7792	0.0760	8.1M	51.8ms

SFMNet achieves a good balance between performance and model complexity.

LR **SRCNN** EDSR FSRNet DIC SPARNet SISN SFMNet SFMGAN GT

SFMNet can recover more accurate and realistic details than other methods.

Conclusion

- We develop a spatial-frequency mutual network (SFMNet) for face super-resolution, which is the first work to explore the interaction between spatial domain and frequency domain in this field.
- We carefully design a frequency-spatial interaction block that can fuse these dependencies mutually and boost face super-resolution performance.
- Experimental results demonstrate that our proposed method can achieve state-of-theart performance.

Thank you for your attention!

<u>https://aiialabhit.github.io/</u> Artificial Intelligence & Image Analysis (AIIA) Lab