Paper Tag: WED-PM-156

# Self-supervised Blind Motion Deblurring with Deep Expectation Maximization

Ji Li, Weixi Wang, Yuesong Nan, and Hui Ji

Department of Mathematics, National University of Singapore, 119076, Singapore

# Highlights



- We present a self-supervised deep learning approach to restore motion-blurred images due to camera shake
- Contributions: The proposed approach is
  - The first dataset-free deep learning method for removing general motion blur (uniform and non-uniform) from images due to camera shake
  - The first approach that combines DNN-based re-parametrization and EM algorithm
  - A powerful method that significantly outperforms existing solutions for blind motion deblurring

# Background



- Motion blur occurs when the camera shakes during the shutter time, resulting in a blurring effect
- To remove the uniform and non-uniform motion blur caused by camera shake from an image







Figure 1: Blind image deblurring

### Main idea



- DNN-based re-parametrization of the image and the kernel set
  - DIP for latent image
  - Multi-head NN for kernel set with embedded two priors
    - Implicit low-dimensional prior
    - Physical constraints prior with Softmax layer
- Contribution: Monte Carlo Expectation Maximization (MCEM) approach for NN weights inference of kernel network motivated from the Bayesian inference for blind deconvolution

# Cont'd





Figure 2: The diagram of our solution



- Two unknowns are reparameterized by two networks
  - Image network  $T_f(\theta_f, z)$  and the kernel network  $T_k(\theta_k, \tilde{z})$
- The setting of kernel inference problem in EM framework
  - 1. Observation data: the blurred image  ${m g}$
  - 2. Latent variable: the weights  $\theta_f$  of image-relating network  $T(\theta_f, z)$
  - 3. Parameters: the weights  $\boldsymbol{\theta}_{\mathcal{K}}$  of kernel-relating network  $T(\boldsymbol{\theta}_{\mathcal{K}}, \tilde{\boldsymbol{z}})$

# MCEM algorithm using Langevin dynamics

• E-step: Calculate the expectation of logarithm likelihood with respective to  $p(\theta_f | \mathbf{g}; \theta_K^{t-1})$ :

$$Q(\boldsymbol{\theta}_{K}|\boldsymbol{\theta}_{K}^{t-1}) = \mathbb{E}_{\boldsymbol{\theta}_{f} \sim \boldsymbol{p}(\boldsymbol{\theta}_{f}|\boldsymbol{g};\boldsymbol{\theta}_{K}^{t-1})} \left[\log \boldsymbol{p}(\boldsymbol{g}|\boldsymbol{\theta}_{f};\boldsymbol{\theta}_{K})\right]$$
(1)

• M-step: Maximize the expectation of the likelihood:

$$\boldsymbol{\theta}_{K}^{t} = \underset{\boldsymbol{\theta}_{K}}{\arg\max} \, Q(\boldsymbol{\theta}_{K} | \boldsymbol{\theta}_{K}^{t-1}) \tag{2}$$

• Use Monte-Carlo to address the intractable expectation computation

$$Q(\boldsymbol{\theta}_{K}|\boldsymbol{\theta}_{K}^{t-1}) \approx \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \log p(\boldsymbol{g}|\boldsymbol{\theta}_{f}^{i};\boldsymbol{\theta}_{K}), \boldsymbol{\theta}_{f}^{i} \sim p(\boldsymbol{\theta}_{f}|\boldsymbol{g};\boldsymbol{\theta}_{K}^{t-1})$$
(3)





 LD samples the distribution p(θ<sub>f</sub>|g; θ<sup>t-1</sup><sub>K</sub>) by the so-called stochastic gradient Langevin dynamics (SGLD): For i = 1, 2, ..., n<sub>s</sub>

$$\boldsymbol{\theta}_{f}^{i} = \boldsymbol{\theta}_{f}^{i-1} + \alpha \nabla_{\boldsymbol{\theta}_{f}} \log \boldsymbol{p}(\boldsymbol{\theta}_{f}^{i-1} | \boldsymbol{g}; \boldsymbol{\theta}_{K}^{t-1}) + \sqrt{2\alpha} \boldsymbol{w}, \tag{4}$$

where  $\boldsymbol{w} \sim \mathcal{N}(0, \boldsymbol{I})$ 



- Use the alternative EM algorithm to estimate the kernel set and the latent image
- A warm-up strategy is implemented to initialize the multi-head subnetwork for kernel set using the uniform deblurring



- The image NN *T<sub>f</sub>*(*θ<sub>f</sub>*) is implemented as 5-level U-Net with channel size 64. The kernel NN *T<sub>K</sub>*(*θ<sub>K</sub>*) is implemented as U-Net with 4 levels whose channel size is [32, 32, 64, 64]
- The learning rate is set to be 0.01 for  $T_{\it f}$  and 0.0001 for M-step when optimizing  $T_{\it K}$

# **Quantitative evaluation**



#### Table 1: Average PSNR comparison on the non-uniform dataset of Köhler

|      | Non-learning methods |       |              | Supervised learning methods |       |       |       |       | Self-supervised |       |
|------|----------------------|-------|--------------|-----------------------------|-------|-------|-------|-------|-----------------|-------|
| No.  | Xu V                 | Whyte | Vasu         | Tao                         | Kupyn | Zamir | Cho   | Li    | Liu             | Ours  |
| 1    | 29.19                | 29.77 | 32.44        | 29.14                       | 28.99 | 29.86 | 27.66 | 29.82 | 27.21           | 32.41 |
| 2    | 24.43                | 24.27 | 26.52        | 23.10                       | 23.78 | 22.57 | 21.69 | 22.56 | 21.19           | 26.84 |
| 3    | 29.97                | 30.73 | 32.60        | 29.96                       | 30.00 | 28.04 | 28.09 | 30.21 | 28.20           | 33.18 |
| 4    | 25.76                | 26.60 | <u>27.99</u> | 25.22                       | 25.09 | 24.78 | 23.91 | 24.95 | 23.49           | 28.60 |
| Avg. | 27.34                | 27.84 | 29.89        | 26.85                       | 26.97 | 26.32 | 25.34 | 26.89 | 25.02           | 30.26 |

# Cont'd



#### Table 2: Average PSNR comparison on the non-uniform dataset of Lai

|           | Non-learning methods |       |              | Sup   | ervised      | Self-supervised |       |       |       |       |
|-----------|----------------------|-------|--------------|-------|--------------|-----------------|-------|-------|-------|-------|
|           | Xu                   | Whyte | Vasu         | Tao   | Kupyn        | Zamir           | Cho   | Li    | Liu   | Ours  |
| Manmade   | 17.90                | 17.33 | 17.93        | 18.45 | <u>18.73</u> | 17.42           | 16.78 | 17.28 | 17.39 | 19.17 |
| Natural   | 21.99                | 21.04 | 21.94        | 22.28 | 22.24        | 20.76           | 19.88 | 20.59 | 20.90 | 22.70 |
| People    | 25.42                | 23.92 | 25.63        | 26.87 | 26.71        | 23.95           | 23.64 | 24.23 | 24.76 | 26.90 |
| Saturated | 18.39                | 17.33 | 17.57        | 20.10 | 17.91        | 16.73           | 16.58 | 16.67 | 18.52 | 21.46 |
| Text      | 18.97                | 13.22 | <u>19.19</u> | 18.66 | 19.11        | 15.63           | 17.17 | 17.45 | 17.42 | 21.91 |
| Average   | 20.53                | 18.57 | 20.45        | 21.27 | 20.94        | 18.90           | 18.81 | 19.25 | 19.80 | 22.42 |

### Visualization





Figure 3: Visual comparison of the results for samples images from real dataset of Lai and Sun

## Acknowledgment



#### People

- Hui Ji (Prof. from NUS), who leads the project
- Yuesong Nan (PhD from NUS), now works for Zoom. Inc.
- Weixi Wang (PhD from NUS), now works for DBS, Singapore
- Grant: Singapore MOE Academic Research Fund (AcRF) Tier 1 with WBS number A-8000981-00-00