

Hierarchical B-Frame Video Coding Using Two-Layer CANF Without Motion Coding

David Alexandre, Hsueh-Ming Hang, and Wen-Hsiao Peng

National Yang Ming Chiao Tung University (NYCU), Taiwan

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Hybrid Coding vs. This Work

Introduction

Common Generic Hybrid Video Coding System

Proposed Video Coding System

(Two-Layer without Motion Coding)

TLZMC Framework

Proposed Methods

RD-Curve and BD-Rate (UVG, HEVC-B) Results

Complexity Comparison

Contributions

Introduction

01

02

03

()4

THE FIRST ATTEMPT

COMPLEXITY REDUCTION

CONTEXT ADAPTIVE FRAMEWORK

GOOD RD PERFORMANCE <u>The first attempt</u> at two-layer coding structure without motion coding

Shows <u>complexity reduction</u> over the state-of-the-art methods

Demonstrates <u>context adaptive</u> <u>framework</u> via rate control

<u>Comparable RD performance to</u> SOTA for certain video scenes

ANFIC

Related Works

ANFIC: Image Compression Using Augmented Normalizing Flows

- Based on Augmented Normalizing Flows (ANF)
- Uses a flow-based framework that hierarchically stacks and extends multiple VAEs
- Achieves state-of-the-art coding performance in terms of PSNR-RGB

*Figure from ANFIC: Image Compression Using Augmented Normalizing Flows, (Ho, et al. 2021)

B-CANF: Deep B-frame Coding

Related Works

B-CANF: Adaptive B-frame Coding with Conditional Augmented Normalizing Flows (Chen, et al. 2022)

 Utilizes <u>conditional augmented</u> <u>normalizing flows</u> Incorporates <u>frame-type</u> <u>adaptive</u> coding

Proposed Methods

Two-Layer Zero Motion Coding for Hierarchical B-frames

Key features:

- Lower complexity than the state-of-the-art, B-CANF
- Comparable results to B-CANF in some scenarios
- Outperform other deep hierarchical B-frame coding
- Context adaptive coding and bit rate control

TLZMC Framework

Proposed Methods

DS-Net and SR-Net

 Uses simple neural networks to perform downsampling (1/4x) and super-resolution

Proposed Methods

• Supports end-to-end training

Enhancement Layer (EL) Proposed Methods

Merging Maps Examples (UVG ShakeNDry)

 $\lambda = 256$

 $\lambda = 2048$

Adaptive CANF Codec

Proposed Methods

- Skips latent samples by using their mean values for reconstruction
- Predicts a "skip mask" on both the encoder and decoder sides

Skip Mask Examples (UVG ShakeNDry)

Black = skipped

λ=256

λ=512

λ=1024

TLZMC Variants

Proposed Methods

RD-Curve and BD-Rate (UVG, HEVC-B) Results

Training Procedure

	TLZMC	Loss Function
1	Frame Interpolator	$D(ar{x}_t, x_t)$
2	DS + CANF Compressor	$D(\hat{x}_{t}^{DS}, x_{t}^{DS}) + R_{b}$
3	Super Resolution	$D(\hat{x}_t^{SR}, x_t) + R_b$
4	Multi-Frame Merging Network	$D(x_t^\prime,x_t)$
5	Adaptive CANF Compressor	$D(\hat{x}_t, x_t) * \lambda + R_b + R_e$
6	End-to-end	$egin{aligned} D(\hat{x}_t, x_t) * \lambda + arepsilon * R_b \ + R_e + Aux \end{aligned}$
$Aux = (D(y_2,x_t') + D(x_t',x_t) + D(\hat{x}_t^{SR},x_t)) * 0.01 * \lambda$		

Bit Allocation for BL and EL

Bit Rate Ratio of BL to EL

Complexity Comparison

Conclusions

- Motion coding replaced by "neural prediction + base-layer coding"
- Less computational complexity
- RD performance close to the SOTA
- Content adaptivity is crucial to coding gain

Thank you for your attention