

NaQ: Leveraging Narrations as Queries to Supervise Episodic Memory

Santhosh Kumar Ramakrishnan¹

Ziad Al-Halah²

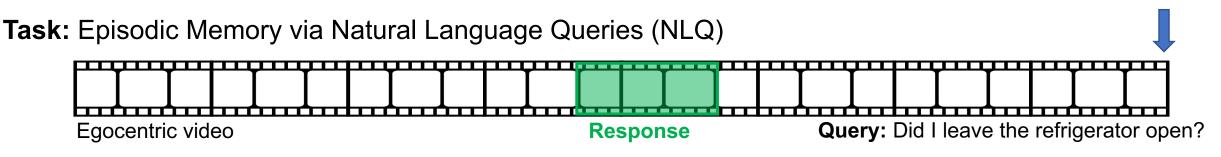
Poster session: TUE-PM-245

Kristen Grauman^{1,3}

Project page: https://vision.cs.utexas.edu/projects/naq/

Code: https://github.com/srama2512/NaQ

Overview



Challenge: Limited training data (e.g., 11k queries over 130 hours of video)

Our idea: Augment NLQ training by learning to localize "narrations"

Example narration text: C rinses hand; C closes tap

Episodic Memory (EM)

Goal: Enable AR assistants for super-human memory

Query: Who did I interact with when I played with the dog for the second time in the living room?

Video credits: Ego4D

Episodic Memory (EM)

Goal: Enable AR assistants for super-human memory

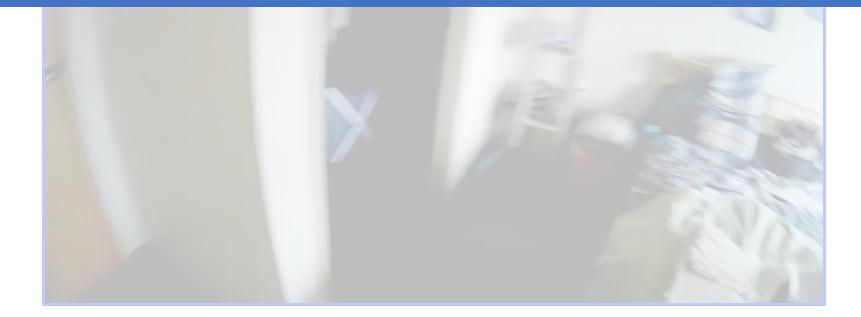
t=480

Long-form egocentric video

Response

Query: Who did I interact with when I played with the dog for the second time in the living room?

Needle in a haystack problem: Long egocentric videos with short responses



Video credits: Ego4D

Episodic Memory benchmark on Ego4D

Temporally localize responses to Natural language queries (NLQ)

Queries formulated based on templates		NLQ dataset statistics					
Category	Template	Split	Train	Val	Test		
Objects	 Where is object X before / after event Y? Where is object X? What did I put in X? How many X's? (quantity question) What X did I Y? In what location did I see object X ? What X is Y? State of an object Where is my object X? 	<pre># video hours # clips # queries Average c</pre>	-				
Place	Where did I put X?	Average respon	nse dura	tion: 10.	.5 sec		
People	Who did I interact with when I did activity X? Who did I talk to in location X? When did I interact with person with role X?	Needle in a	haystac	k proble	em		

Key challenge: Limited annotation quantity and sparsity

NLQ annotation procedure

Step 1: Preview long video

Step 2: Formulate creative question

Who did I interact with when I played with the dog for the second time in the living room?

Template-based
 Unambiguous
 Precise response localization

Step 3: Annotate response (start, end) times

start end

NLQ annotation procedure

Step 1: Preview long video

Expensive and slow process limits scalability of annotations

Template-based
 Unambiguous
 Precise response localization

Step 3: Annotate response (start, end) times

start end

NaQ: Narrations-as-Queries

Key insight: Augment NLQ training by learning to localize *narrations* Timestamped play-by-play descriptions of camera-wearer's activities.

Easier to annotate

Describe as you watch the video

✓ Available on a large scale

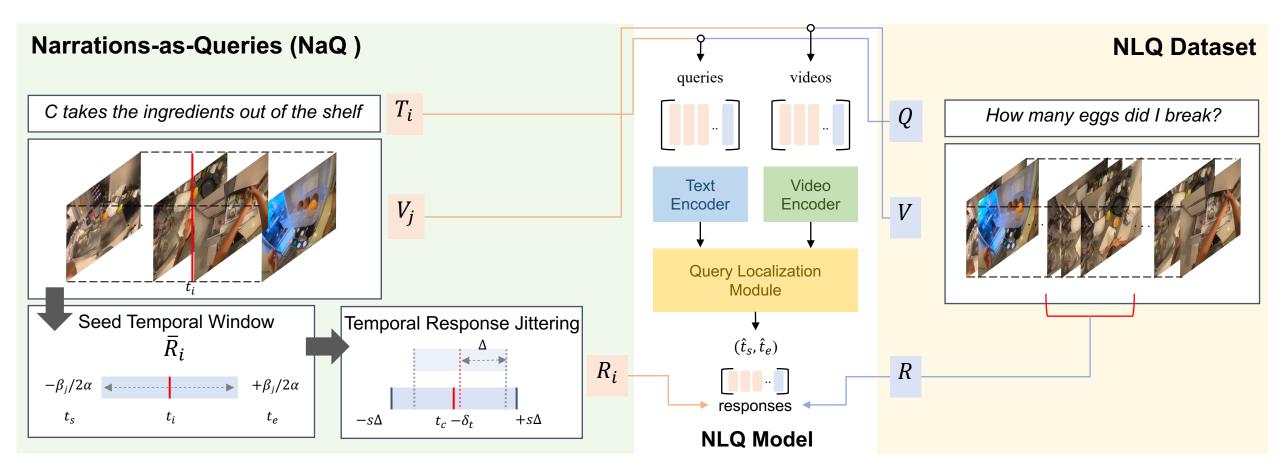
200x more narrations than NLQ annotations

Multi-purpose annotations

- Not annotated specifically for NLQ
- Applications across several benchmarks
- Likely to be expanded over time

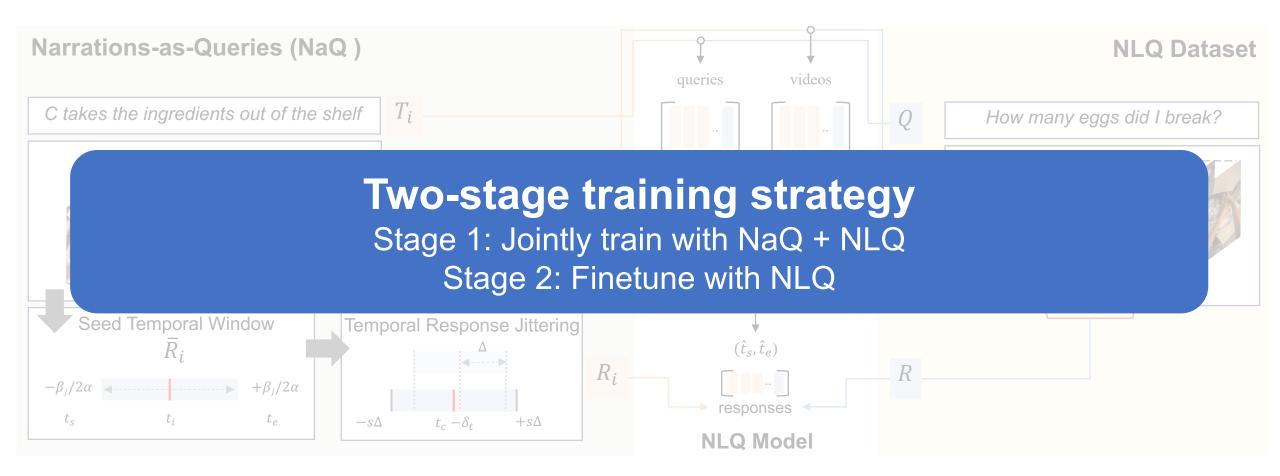
NaQ data-augmentation for scaling NLQ

Simple-yet-effective approach: Augment NLQ dataset using NaQ and perform large-scale training



NaQ data-augmentation for scaling NLQ

Simple-yet-effective approach: Augment NLQ dataset using NaQ and perform large-scale training



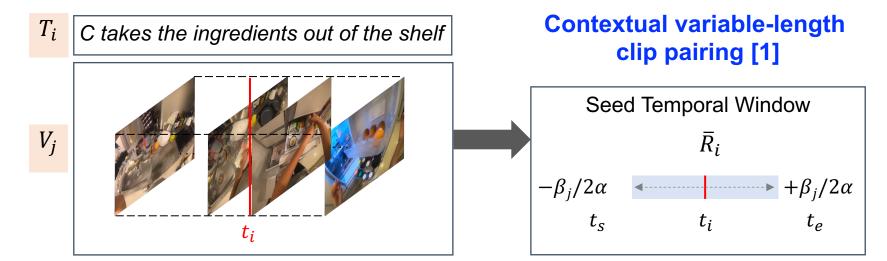
Converting narrations \rightarrow NLQ queries

Narration annotation: $\langle V_i, T_i, t_i \rangle$

- V_j : Video
- T_i : Narration text
- t_i : Time-stamp

NaQ annotation for NLQ: $\langle V_j, T_i, R_i \rangle$

 V_j : Video T_i : Narration text as query R_i : (t_s, t_e) response window



 β_j = average separation between consecutive narrations in video j α = average of β_i over all videos

Converting narrations → NLQ queries

Narration annotation: $\langle V_i, T_i, t_i \rangle$

- V_j : Video
- T_i : Narration text
- t_i : Time-stamp

NaQ annotation for NLQ: $\langle V_j, T_i, R_i \rangle$

 V_j : Video T_i : Narration text as query R_i : (t_s, t_e) response window

NaQ augmentation significantly expands the training data

- 11k → 860k queries
- $1k \rightarrow 5k$ video clips

 T_i

- *s* = randomly sampled scaling factor
- δ_t = random translation factor
- Δ = half-width of original temporal window

Experimental setup

Dataset Ego4D NLQ dataset [1]

Evaluation metrics Mean Recall @ k: Recall @ top k retrieval averaged over IoU=[0.3, 0.5]

Baselines

VSLNet [1,2]: Span-based localization approach to vision-language grounding

EgoVLP [3] : Enhances VSLNet with clip features learned through egocentric video-language pretraining

ReLER* [4] : Improves over VSLNet architecture + uses video-level data augmentation

*we further improve the ReLER baseline using EgoVLP features

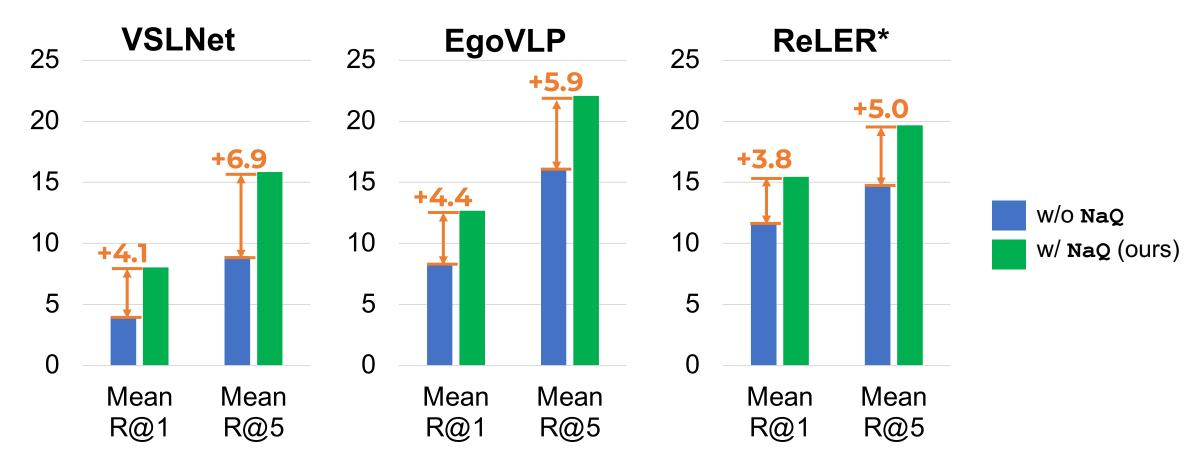
[1] Grauman, Kristen, et al. "Ego4d: Around the world in 3,000 hours of egocentric video." CVPR 2022

[2] Zhang, Hao, et al. "Span-based Localizing Network for Natural Language Video Localization." ACL 2020

[3] Lin, Kevin Qinghong, et al. "Egocentric video-language pretraining." NeurIPS 2022

[4] Shao, Jiayi, Xiaohan Wang, and Yi Yang. "ReLER@ ZJU Submission to the Ego4D Moment Queries Challenge 2022." arXiV 2022

NaQ augmentation *consistently* and *significantly* enhances all baselines



Our approach improves NLQ performance by up to 7% absolute mean recall

NaQ sets the state-of-the-art results on the public Ego4D NLQ leaderboard

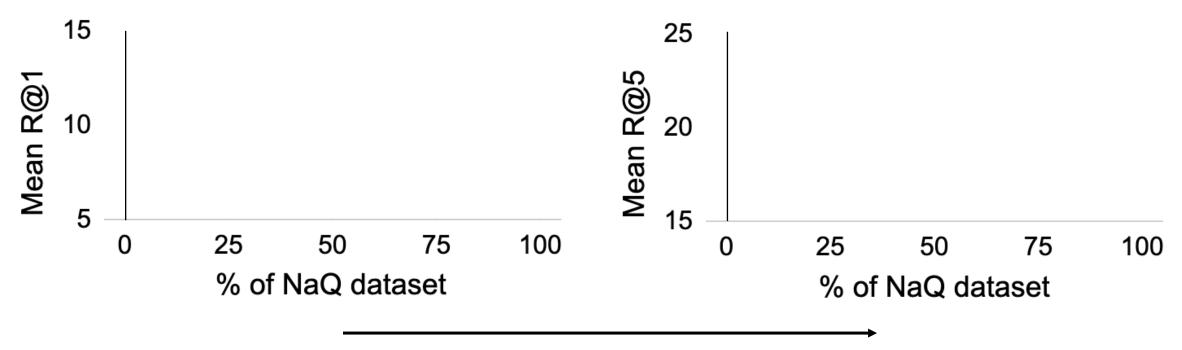
Method	R@1 IoU=0.3	R@1 IoU=0.5	Mean R@1 [†]	R@5 IoU=0.3	R@5 IoU=0.5
NaQ++ (ours) ^{\ddagger}	21.70	13.64	17.67	25.12	16.33
NaQ (ours)	18.46	10.74	14.59	21.50	13.74
InternVideo [5]	16.46	10,06	13.26	22.95	16.11
Badgers@UW-Mad. [27]	15.71	9.57	12.64	28.45	18.03
CONE [18]	15.26	9.24	12.25	26.42	16.51
ReLER [24]	12.89	8.14	10.51	15.41	9.94
EgoVLP [23]	10.46	6.24	8.35	16.76	11.29
VSLNet [38]	5.42	2.75	4.08	8.79	5.07

[†] Mean R@1 is the primary metric for deciding challenge winners

[‡] NaQ++ combines winning entries from prior challenges and NaQ to achieve SoTA

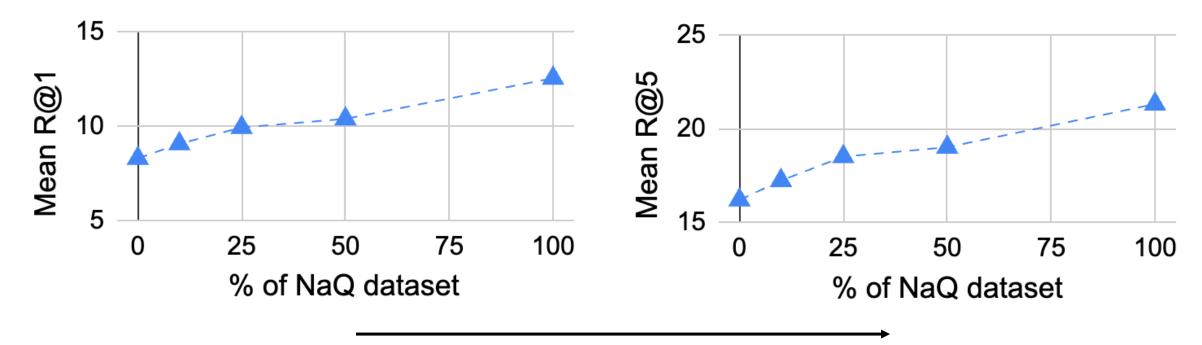
Our approach improves NLQ SotA by 4.5% absolute mean recall @ 1

NaQ performance scales with the number of narrations used for training



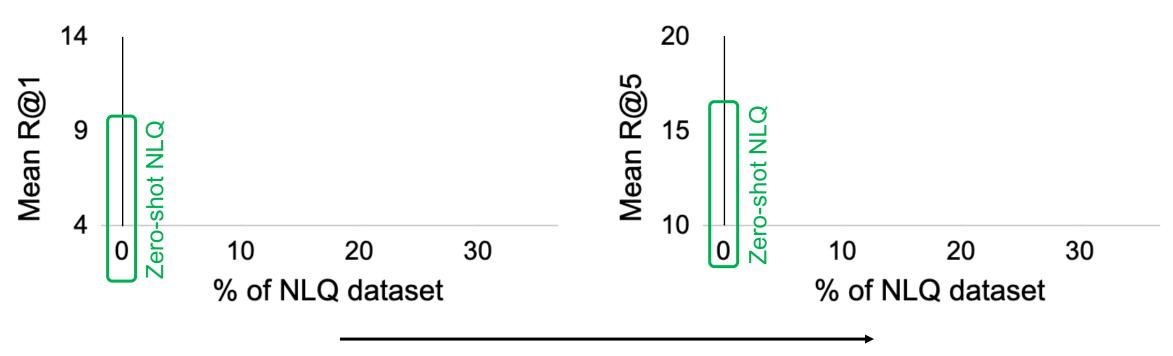
narrations used for NaQ augmentation

NaQ performance scales with the number of narrations used for training



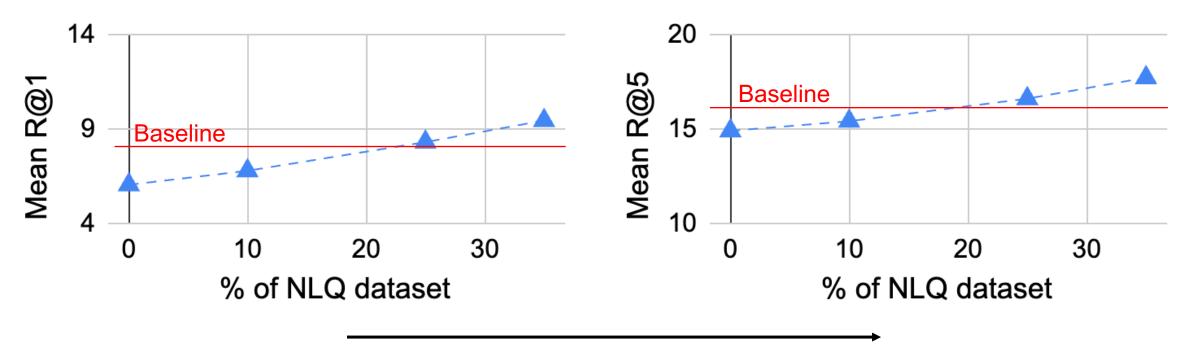
narrations used for NaQ augmentation

NaQ facilitates zero-/few-shot NLQ



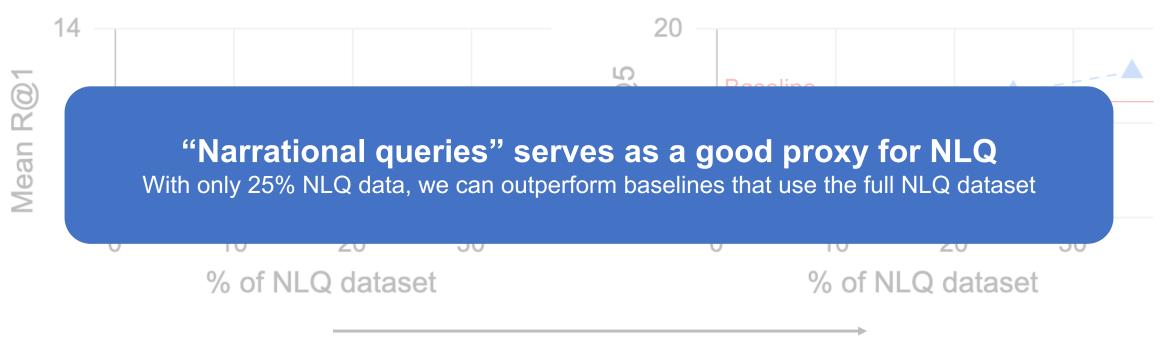
NLQ annotations used for training

NaQ facilitates zero-/few-shot NLQ

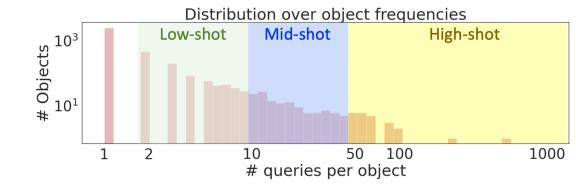


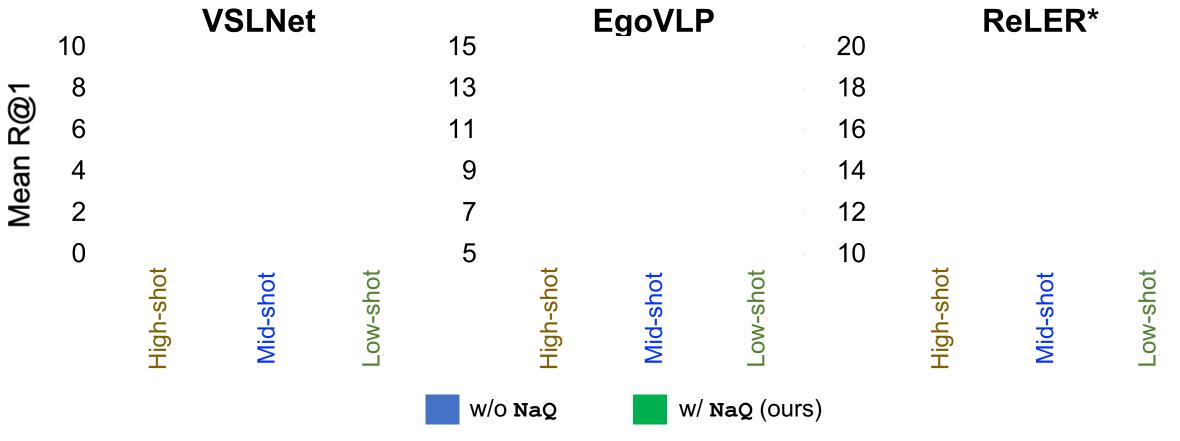
NLQ annotations used for training

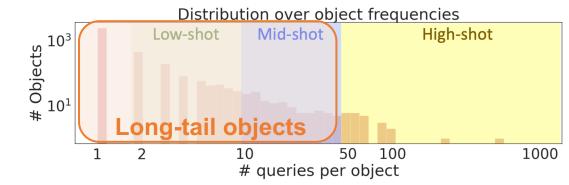
NaQ facilitates zero-/few-shot NLQ



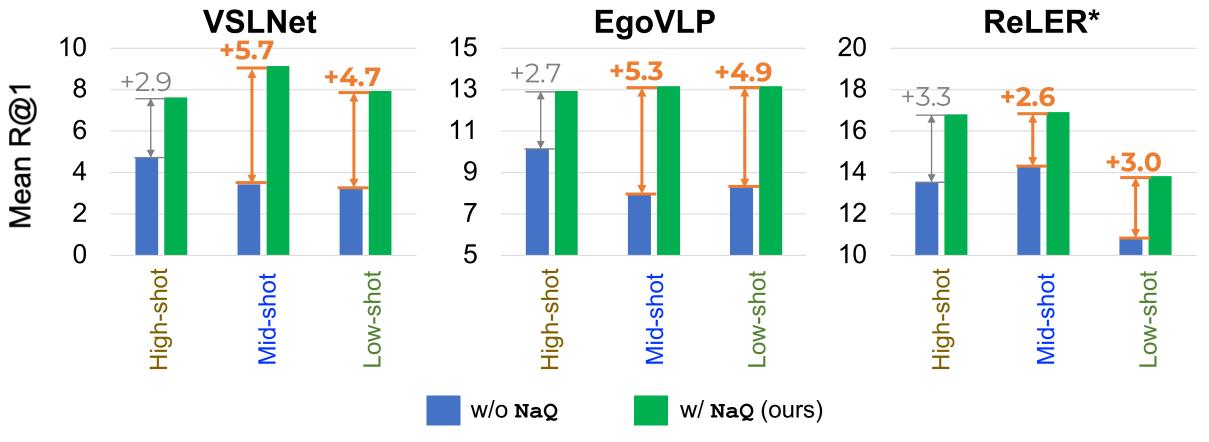
NLQ annotations used for training

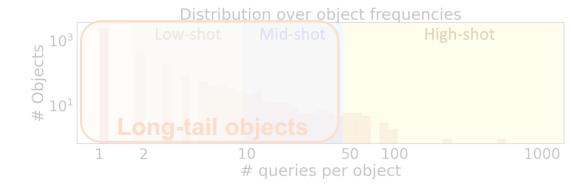




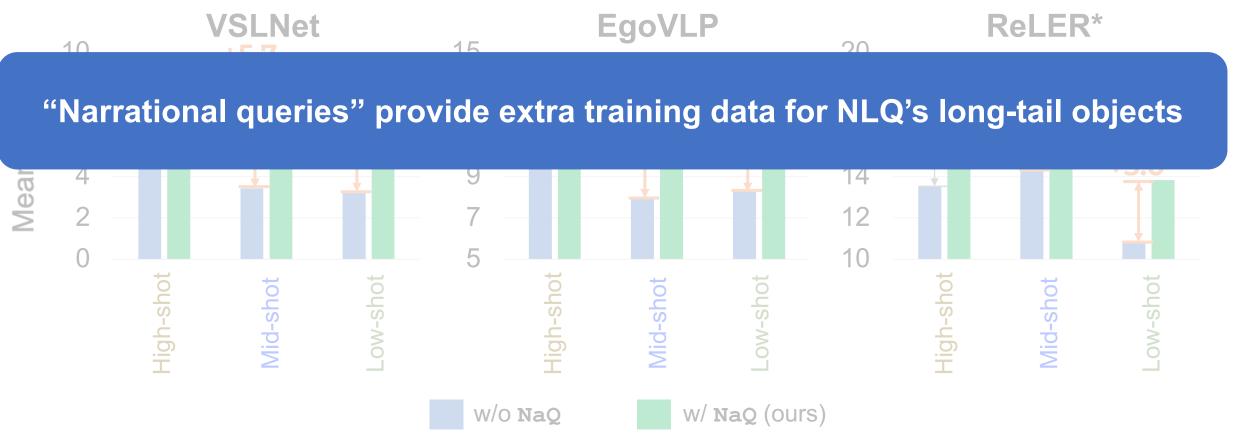


NaQ significantly improves responding to queries about long-tail objects





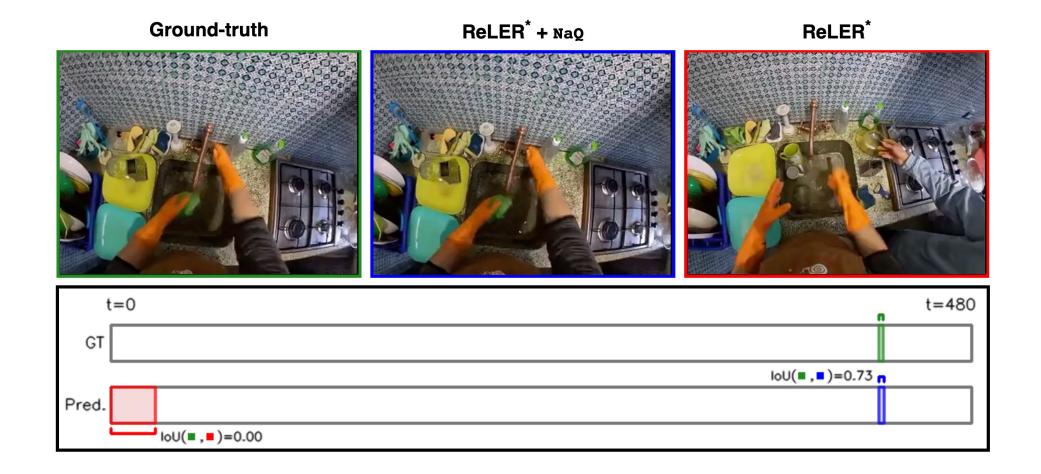
NaQ significantly improves responding to queries about long-tail objects



Qualitative results

NaQ succeeds, while baseline fails, to reason about the long-tail object "soap"

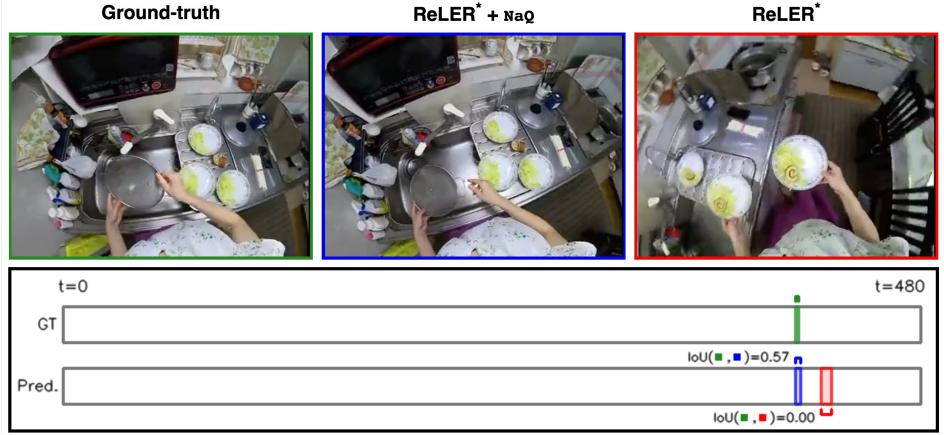
Query: Where was the <u>soap</u> before I picked it?



Qualitative results

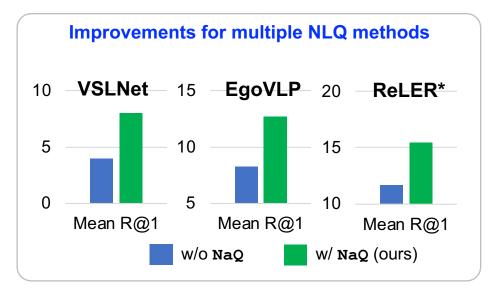
NaQ succeeds, while baseline fails, to reason about the long-tail object "sieve"

Query: Where did I last put the <u>sieve</u>?

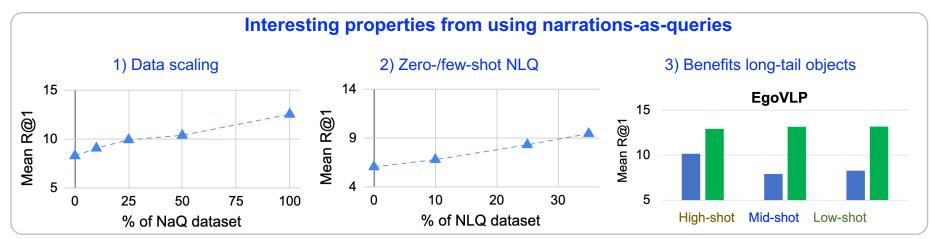


Conclusion

NaQ: Simple-yet-effective augmentation strategy for Episodic Memory NLQ



Method	R@1 IoU=0.3	R@1 IoU=0.5	Mean R@1 [†]
NaQ++ (ours) ^{\ddagger}	21.70	13.64	17.67
NaQ (ours)	18.46	10.74	14.59
InternVideo [5]	16.46	10.06	13.26
Badgers@UW-Mad. [27]	15.71	9.57	12.64
CONE [18]	15.26	9.24	12.25
VSLNet [38]	5.42	2.75	4.08



NaQ: Leveraging Narrations as Queries to Supervise Episodic Memory

Santhosh Kumar Ramakrishnan¹

Ziad Al-Halah²

Poster session: TUE-PM-245

Kristen Grauman^{1,3}

Project page: https://vision.cs.utexas.edu/projects/naq/

Code: https://github.com/srama2512/NaQ

