

Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning

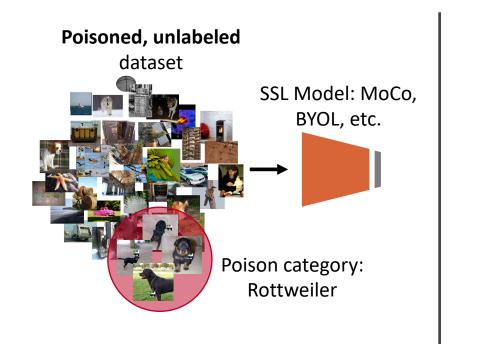
Ajinkya Tejankar¹, Maziar Sanjabi², Qifan Wang², Sinong Wang², Hamed Firooz², Hamed Pirsiavash¹ and Liang Tan² ¹University of California, Davis ²Meta AI

> SESSION: WED-AM-383 POSTER ID: 7064

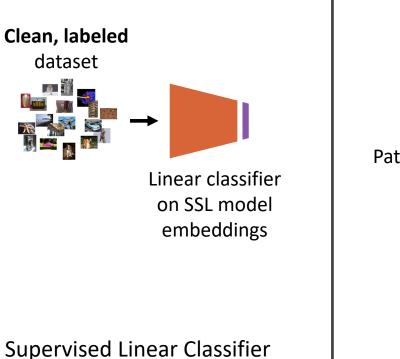
JUNE 18-22, 2023 CVPR VANCOUVER, CANADA

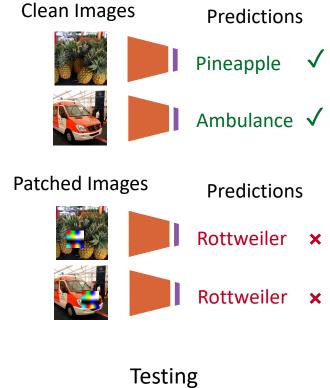
https://github.com/UCDvision/PatchSearch

Background: Backdoor Attacks on SSL



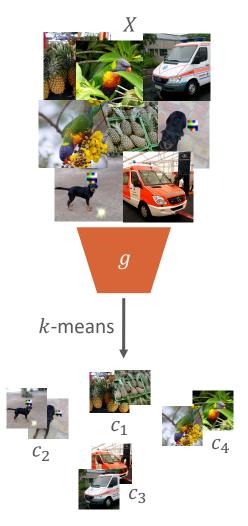
Self-Supervised Pretraining

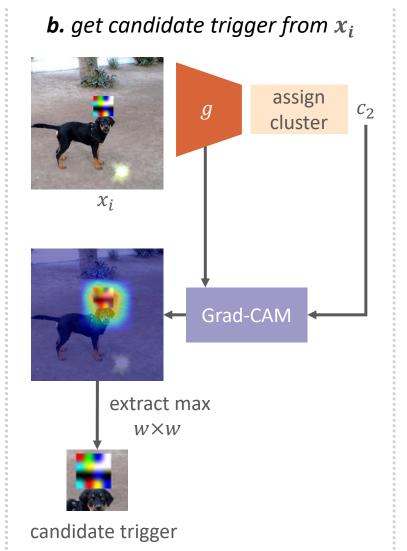




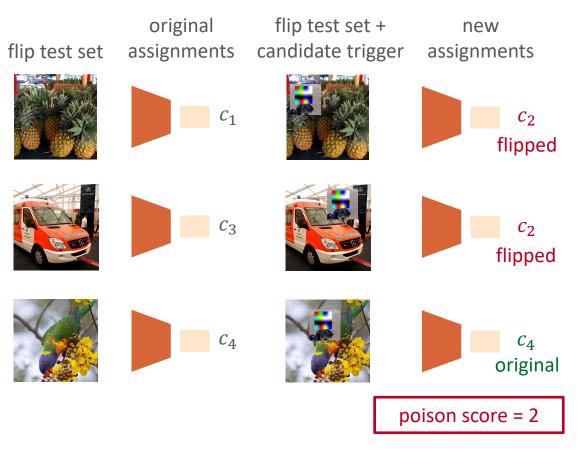
Summary of PatchSearch

a. assign clusters





c. calculate poison score of x_i

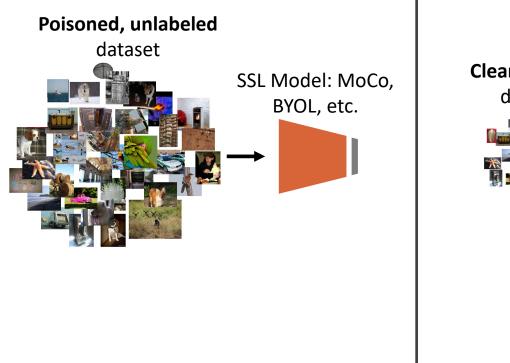


Summary of PatchSearch

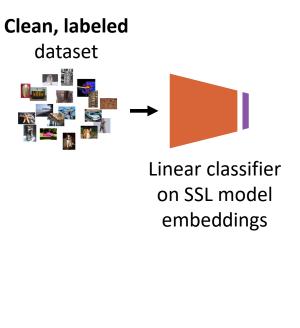
- PatchSearch successfully defends against the backdoor attack
- It restores model performance to the clean level

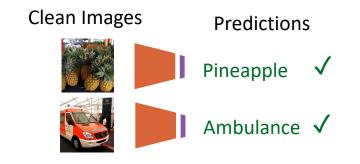
Model Type	Clean Data			Patched Data				
	Acc	FP	ASR	Acc FP AS				
ViT-B	MoCo-v3, poison rate 0.5%							
Clean	70.5	18.5	0.4	64.6	27.2	0.5		
Backdoored	70.6 17.4 0.4 46.9 1708.9 34.5							
PatchSearch	70.2	70.2 23.1 0.5 <mark>64.5↑ 39.8↓ 0.5</mark>						

Background: Self-Supervised Learning (SSL)



Self-Supervised Pretraining

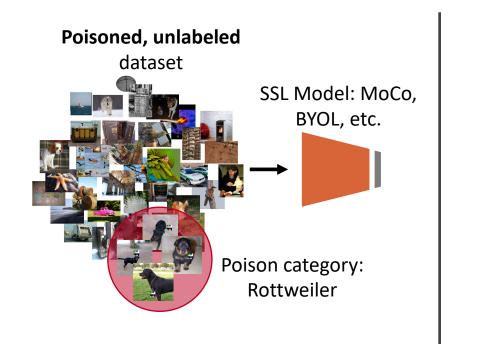




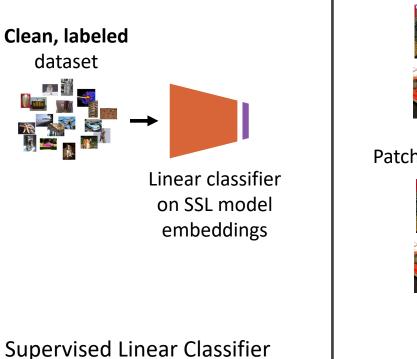
Supervised Linear Classifier

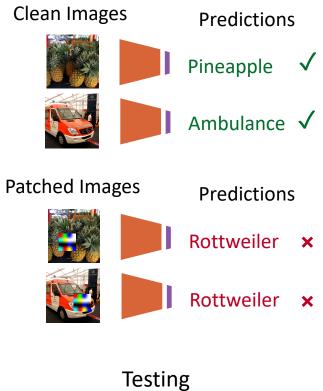
Testing

Background: Backdoor Attacks on SSL



Self-Supervised Pretraining





Goal: Defend SSL against Backdoor Attacks

- We focus on patch-based attacks. Why?
 - More practical than image-wide perturbations
- Challenges
 - No access to trusted or labeled data
 - No knowledge about trigger appearance or location
 - Huge datasets with very few poisons

Existing Solutions

Supervised Backdoor Attack Defenses

- Most defenses directly rely on labels
 - Cannot be used in unlabeled settings
 - Our ideas are similar to SentiNet [a] and Februus[b] (supervised test-time defenses)
- Some defenses do not rely on labels
 - e.g., strong augmentation like CutMix [c]
 - Can be used in unlabeled settings
- KD + Trusted Data Defense [d]
 - Uses Knowledge Distillation (KD) on clean, unlabeled but trusted data
 - Large amount of trusted data is required to retain accuracy

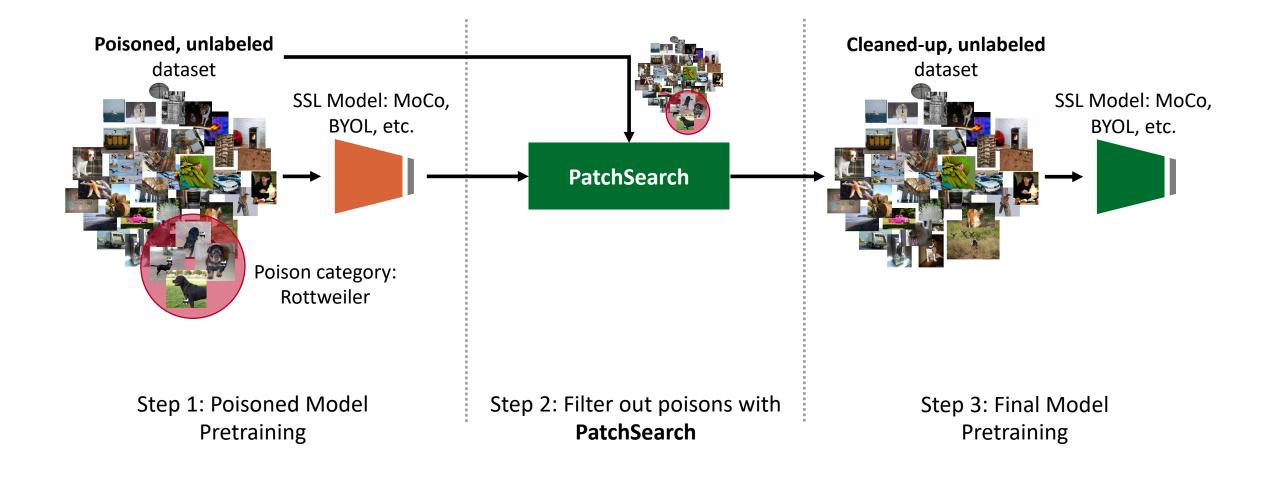
[c] Borgnia, Eitan, et al. "Strong data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff." ICASSP 2021.

[d] Saha, Aniruddha, et al. "Backdoor attacks on self-supervised learning." CVPR 2022.

[[]a] Chou, Edward, Florian Tramer, and Giancarlo Pellegrino. "Sentinet: Detecting localized universal attacks against deep learning systems." SPW 2020.

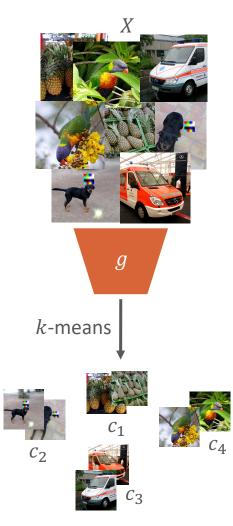
[[]b] Doan, Bao Gia, Ehsan Abbasnejad, and Damith C. Ranasinghe. "Februus: Input purification defense against trojan attacks on deep neural network systems." *Annual Computer Security Applications Conference*. 2020.

Our Solution: 3-Step Defense

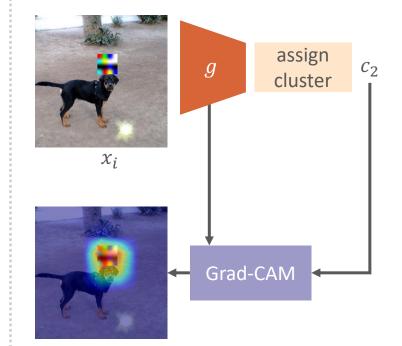


a. assign clusters

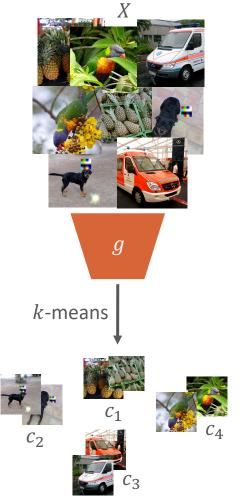
a. assign clusters



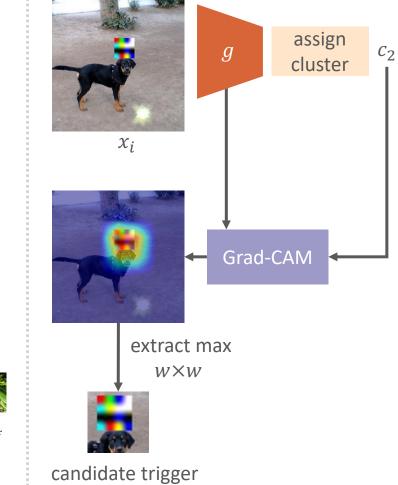
b. get candidate trigger from x_i



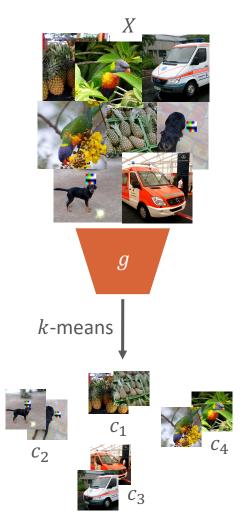
a. assign clusters

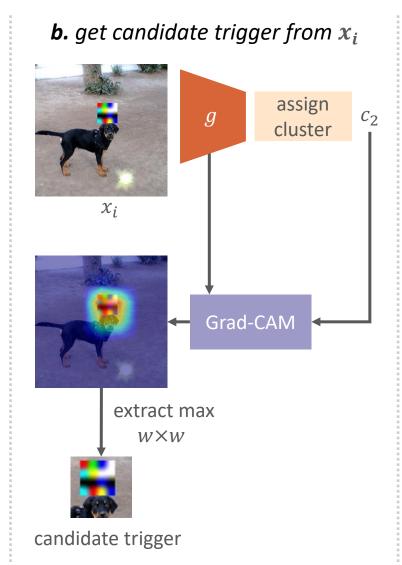


b. get candidate trigger from x_i

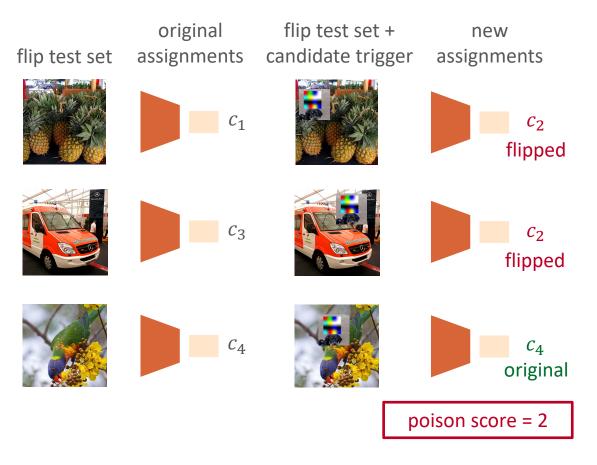


a. assign clusters





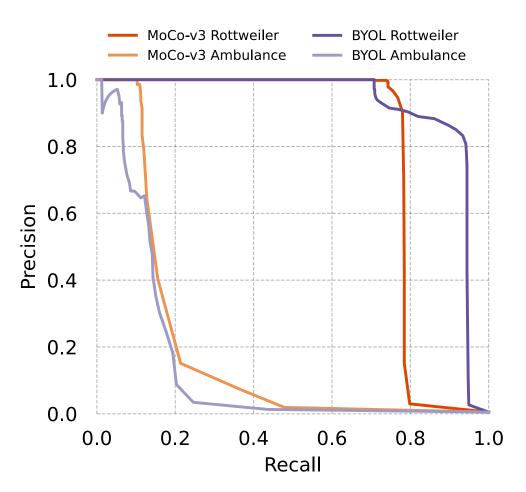
c. calculate poison score of x_i



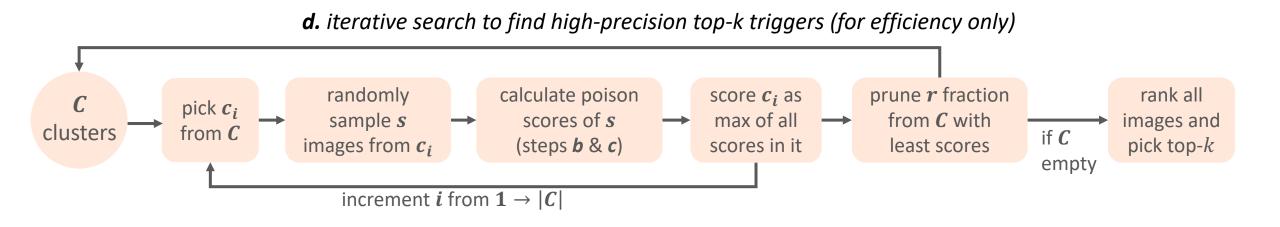
- Use above steps on entire dataset
- Rank dataset with poison score
- Remove top ranked images?
 - Cannot detect all poisons
 - Ranking entire dataset is expensive
 - Only a few images are poisoned

Solution

- Efficiently search for a few top poisons
- Build a classifier to detect similar images

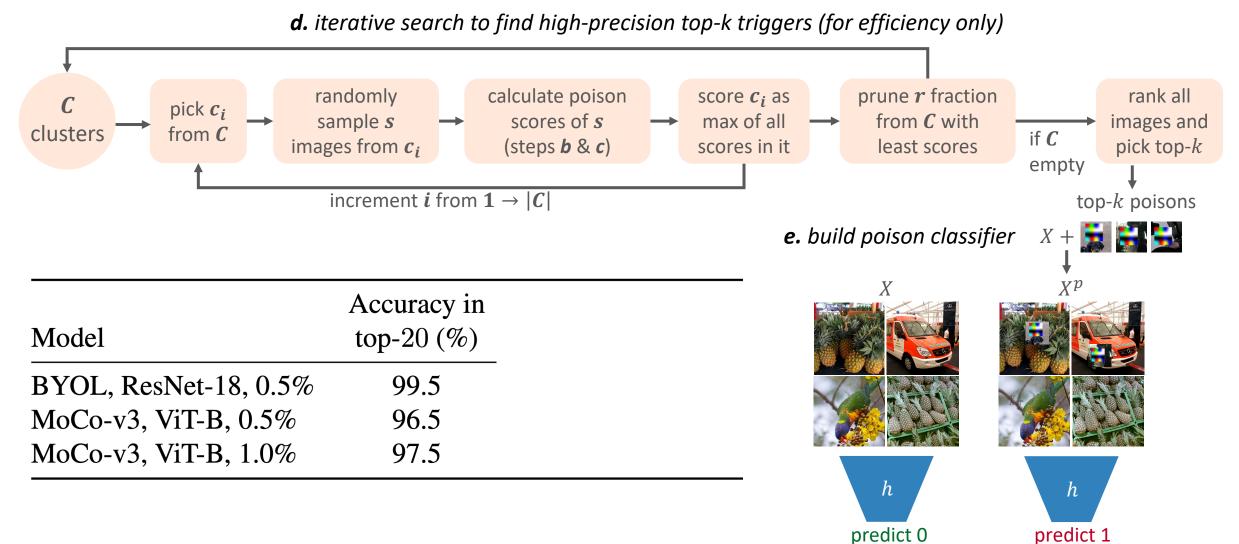


PatchSearch: Improving efficiency



Model	Accuracy in top-20 (%)
BYOL, ResNet-18, 0.5%	99.5
MoCo-v3, ViT-B, 0.5%	96.5
MoCo-v3, ViT-B, 1.0%	97.5

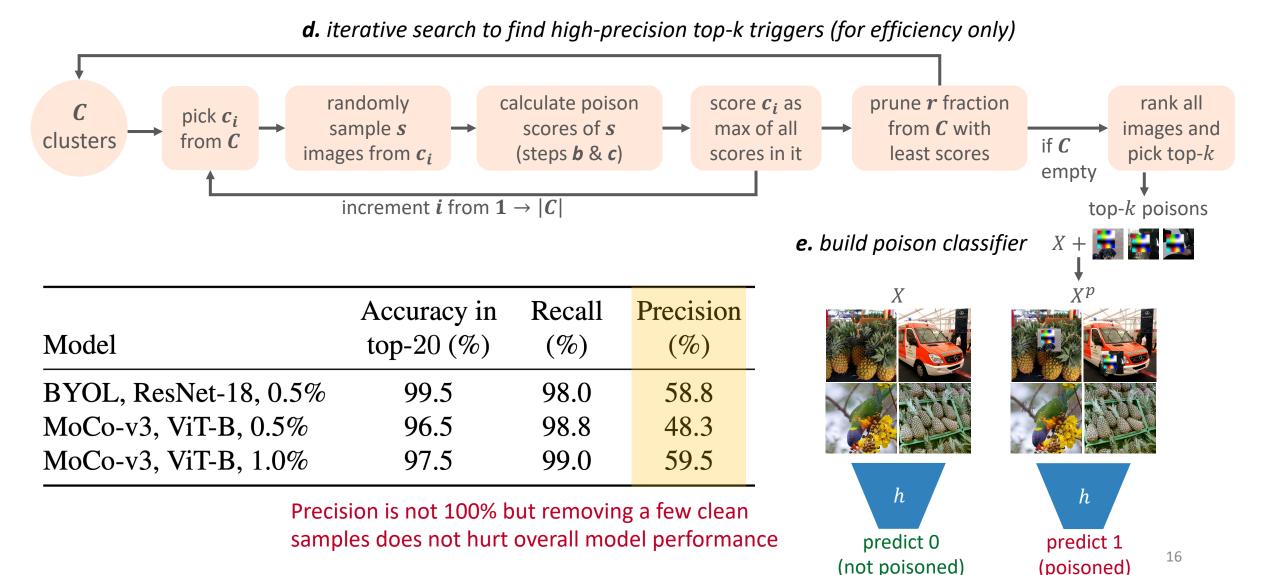
PatchSearch: Improving poison detection



(poisoned) 15

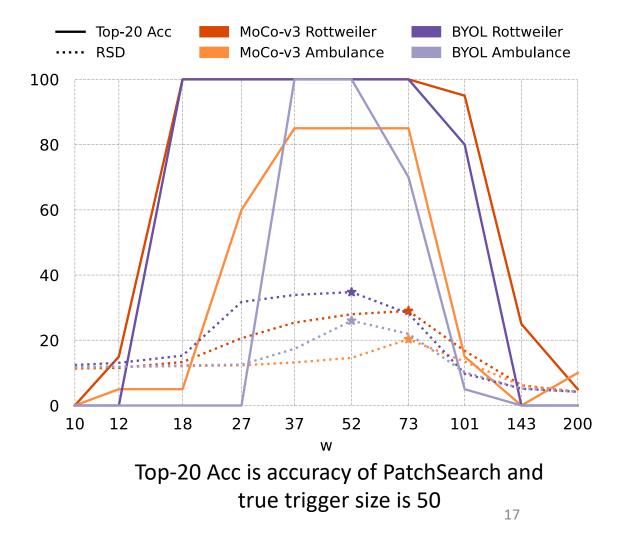
(not poisoned)

PatchSearch: Improving poison detection



PatchSearch: How to choose *w* blindly?

- w is candidate trigger size
- The defender does not know true trigger size
- A tight *w* around the trigger should result in few patches with relatively high scores
- Try out different *w* and pick the one that results in maximum variance in scores



Results averaged across 10 target categories

Clean Data

• All models behave similarly

Model Type	Clean Data			Patched Data			
	Acc FP ASR Acc				FP	ASR	
ViT-B	MoCo-v3, poison rate 0.5%						
Clean	70.5	18.5	0.4	64.6	27.2	0.5	
Backdoored	70.6 17.4 0.4 46.9 1708.9 34.5						
PatchSearch	70.2	23.1	0.5	64.5	39.8	0.8	

Results

Results averaged across 10 target categories

Clean Data

- All models behave similarly
- Patched Data
 - Backdoored models fail

Model Type	C	Clean Data			Patched Data			
	Acc	Acc FP ASR Acc FP						
ViT-B		MoCo-v3, poison rate 0.5%						
Clean	70.5	18.5	0.4	64.6	27.2	0.5		
Backdoored	70.6	70.6 17.4 0.4 <mark>46.9↓ 1708.9↑ 34.</mark>						
PatchSearch	70.2							

Results

 Results averaged across 10 target categories

Clean Data

- All models behave similarly
- Patched Data
 - Backdoored models fail
 - PatchSearch models improve

Model Type	Clean Data			Patched Data			
	Acc	FP	ASR	\overline{SR} Acc \overline{FP} A			
ViT-B	MoCo-v3, poison rate 0.5%						
Clean	70.5	18.5	0.4	64.6	27.2	0.5	
Backdoored	70.6 17.4 0.4 <mark>46.9 1708.9 34.</mark>						
PatchSearch	70.2	23.1	0.5	64.5	39.8↓	0.8	

Results

 Results averaged across 10 target categories

Clean Data

- All models behave similarly
- Patched Data
 - Backdoored models fail
 - PatchSearch models improve
 - Performance is restored to clean model levels

Model Type	Clean Data			Patched Data		
	Acc	FP	ASR	Acc	FP	ASR
ViT-B		МоС	Co-v3, po	oison ra	te 0.5%	
Clean	70.5	18.5	0.4	64.6	27.2	0.5
Backdoored	70.6	17.4	0.4	46.9	1708.9	34.5
PatchSearch	70.2	23.1	0.5	64.5	39.8	0.8

- Augmentation for contrastive learning
- No labels needed
- Improves clean model

Model Type	С	Clean Data			Patched Data				
inodel Type	Acc	Acc FP ASR Acc FP A							
ViT-B		MoCo-v3, poison rate 0.5%							
Clean	70.5	18.5	0.4	64.6	27.2	0.5			
Backdoored	70.6	17.4	0.4	46.9	1708.9	34.5			
PatchSearch	70.2	70.2 23.1 0.5 64.5 39.8 0.8							
Clean + i-CutMix	75.6	15.6	0.3	74.4	14.6	0.3			

- Augmentation for contrastive learning
- No labels needed
- Improves clean model
- Simple and effective defense

	Model Type	С	Clean Data			Patched Data		
		Acc	FP	ASR	Acc FP ASI			
	ViT-B	MoCo-v3, poison rate 0.5%						
е	Clean	70.5	18.5	0.4	64.6	27.2	0.5	
	Backdoored	70.6	17.4	0.4	46.9	1708.9	34.5	
	PatchSearch	70.2	23.1	0.5	64.5	39.8	0.8	
	Clean + <i>i</i> -CutMix	75.6	15.6	0.3	74.4	14.6	0.3	
	Backdoored + <i>i</i> -CutMix	75.6	14.9	0.3	72.2 †	242.2 \	4.9	

- Augmentation for contrastive learning
- No labels needed
- Improves clean model
- Simple and effective defense
- Compared to PatchSearch
 - Works implicitly
 - Cannot detect poisons
 - PatchSearch is a better defense

	Model Type	C	Clean Data			Patched Data		
		Acc	FP	ASR	Acc FP AS			
_	ViT-B	MoCo-v3, poison rate 0.5%						
j	Clean	70.5	18.5	0.4	64.6	27.2	0.5	
	Backdoored	70.6	17.4	0.4	46.9	1708.9	34.5	
	PatchSearch	70.2	23.1	0.5	64.5	39.8	0.8	
	Clean + <i>i</i> -CutMix	75.6	15.6	0.3	74.4	14.6	0.3	
	Backdoored + <i>i</i> -CutMix	75.6	14.9	0.3	72.2	242.2	4.9	

- Augmentation for contrastive learning
- No labels needed
- Improves clean model
- Simple and effective defense
- Compared to PatchSearch
 - Works implicitly
 - Cannot detect poisons
 - PatchSearch is a better defense
- Combination of both is best

Model Type	С	Clean Data			Patched Data		
	Acc	FP	ASR	Acc FP ASI			
ViT-B	MoCo-v3, poison rate 0.5%						
Clean	70.5	18.5	0.4	64.6	27.2	0.5	
Backdoored	70.6	17.4	0.4	46.9	1708.9	34.5	
PatchSearch	70.2	23.1	0.5	64.5	39.8	0.8	
Clean + <i>i</i> -CutMix	75.6	15.6	0.3	74.4	14.6	0.3	
Backdoored + <i>i</i> -CutMix	75.6	14.9	0.3	72.2	242.2	4.9	
PatchSearch + <i>i</i> -CutMix	75.2	19.7	0.4	74.2	19.0 ↓	0.4 🖡	

Results: KD Defense

• Comparison with KD Defense

- Proposed in [d]
- Uses unlabeled but trusted data
- PatchSearch has better accuracy and slightly higher FP

Model	Trusted	Clean	Data	Patched Data		
model	Data	Acc	FP	Acc	FP	
Clean	100%	49.9	23.0	47.0	22.8	
Backdoored	0%	50.1	26.2	31.8	1683.2	
KD Defense	25%	44.6	34.5	42.0	37.9	
KD Defense	10%	38.3	40.5	35.7	44.8	
KD Defense	5%	32.1	41.0	29.4	53.7	
PatchSearch	0%	49.4	40.1	45.9 †	50.31	

Results: MAE

Comparison MAE

- MAE was shown to be robust to backdoor attacks in [d]
- However, MAE requires finetuning to be comparable to MoCo-v3
- Also, a properly defended MoCo-v3
 has better model performance

	Clean Data		Patched Data	
Method	Acc	FP	Acc	FP
Finetuned with 1% labeled data				
MAE	65.7	18.7	53.8	97.6
MoCo-v3 (PatchSearch + <i>i</i> -CutMix)	78.2	20.2	76.8	17.1

Conclusion

PatchSearch

- Significantly mitigates the attack
- Finds highly influential patches
- Better than i-CutMix and KD Defense
- Combining with i-CutMix works best

