

Ensemble-based Blackbox Attacks on Dense Prediction

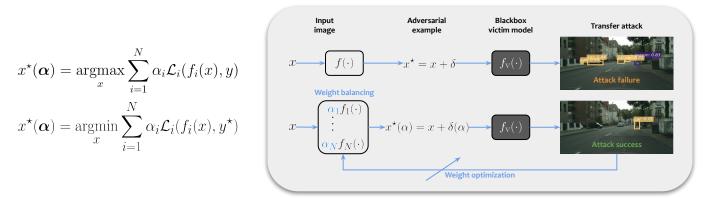
Zikui Cai, Yaoteng Tan, and M. Salman Asif <u>TUE-AM-386</u>

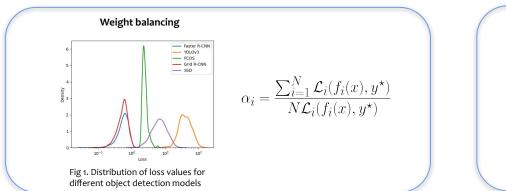
University of California, Riverside

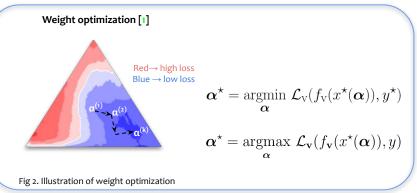
Introduction

- Investigate vulnerabilities of dense prediction models
- Performance
 - Achieves SOTA blackbox attacks on object detection and segmentation
 - Attack multiple tasks at the same time
- Blackbox attacks
 - Transfer-based
 - Query-based
 - Dense prediction is less studied
- Motivation
 - Combine advantages of Transfer- and Query-based attacks
 - Balance the ensemble weights for better whitebox attacks
 - Optimize the ensemble weights according to blackbox feedback

Framework

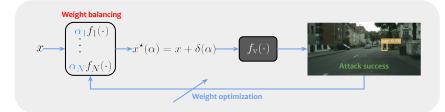






[1] Cai, Zikui, et al. "Blackbox attacks via surrogate ensemble search." Advances in Neural Information Processing Systems 35 (NeurIPS 2022).

Weight balancing



- Motivation
 - To balance variances in the architectures and loss functions of different dense prediction models

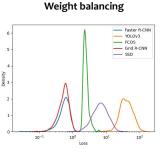


Fig 1. Distribution of loss values for different object detection models

Model Architecture	Training Loss function
Faster R-CNN	$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i, t_i^*)$
FCOS	$L(\{p_{x,y}\},\{t_{x,y}\}) = \frac{1}{N_{pos}} \sum_{x,y} L_{cls}(p_{x,y}, c^*_{x,y}) + \frac{\lambda}{N_{pos}} \sum_{x,y} \mathbb{I}_{\{c^*_{x,y} \ge 0\}} L_{reg}(t_{x,y}, t^*_{x,y})$
SSD	$L(x,c,l,g) = \frac{1}{N} (L_{conf}(x,c) + \alpha L_{loc}(x,l,g))$
Grid R-CNN	Binary cross-entropy loss
YOLOv3	

$$\alpha_i = \frac{\sum_{i=1}^N \mathcal{L}_i(f_i(x), y^\star)}{N \mathcal{L}_i(f_i(x), y^\star)}$$

Weight optimization

- Motivation
 - Combine transfer-based attacks and query-based attacks
 - BASES [1]

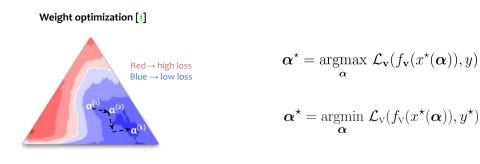
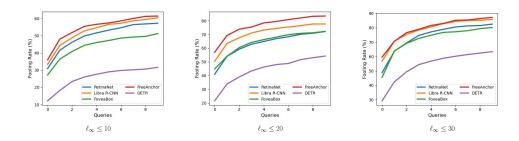


Fig 2. Illustration of weight optimization

Attack on Object Detection

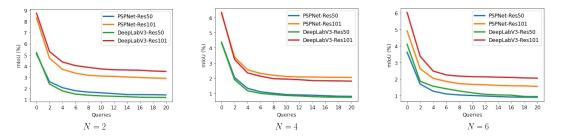
• Fooling rates v.s. Numbers of queries for targeted attack on perturbation budgets {10, 20, 30}.



Perturbation	Weight Weight		Surrogate Ensemble		Blackbox Victim Models (ASR ↑)				
Budget	Balancing	Optimization	FRCNN	YOLOv3	Retina	Libra	Fovea	Free	DETR
	X	×	27.9	91.5	11.6	9.2	9.0	13.4	5.6
$\ell_{\infty} = 10$	X	\checkmark	61.4	99.4	24.3	28.0	22.4	31.0	15.4
$t_{\infty} = 10$	1	×	71.1	85.7	30.9	33.4	27.2	36.0	12.2
	\checkmark	1	86.0	96.9	53.2	56.6	47.2	57.4	29.0
	X	X	40.1	92.2	16.9	20.4	15.4	23.2	9.7
$\ell_{\infty} = 20$	X	~	77.7	99.8	41.0	45.4	37.8	47.0	22.5
$\iota_{\infty} = 20$	1	×	82.7	89.8	41.0	50.4	44.8	57.0	21.6
	1	\checkmark	94.6	98.0	66.9	74.4	68.0	79.4	48.0

Attack on Semantic Segmentation

• mIoU v.s. Numbers of queries for untargeted attack on ensemble sizes {2, 4, 6}. Perturbation budgets is fixed to 8/255

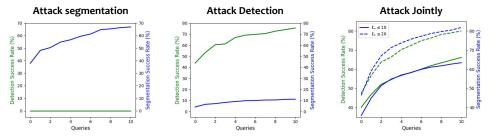


Method		Blackbox Victim Models (mIoU↓)						
	Whitebox Surrogate	PSPNet-Res50	PSPNet-Res101	DeepLabV3-Res50	DeepLabV3-Res101			
Clean Images	-	77.92	78.28	79.12	77.12			
Baseline	PSPNet-Res50	3.43	24.18	5.05	25.74			
Baseline	DeepLabV3-Res50	4.76	21.72	3.92	22.23			
Ours $(Q=0)$	N=2	5.07	8.32	5.19	8.74			
	N=4	4.33	6.26	4.32	6.33			
	<i>N</i> =6	3.62	4.91	4.02	4.84			
	N=2	1.38	2.88	1.15	3.50			
Ours ($Q = 20$)	<i>N</i> =4	0.79	2.04	0.73	1.80			
	<i>N</i> =6	0.90	1.55	0.94	1.09			

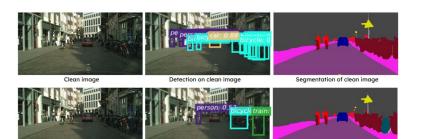
Blue numbers are whitebox attacks

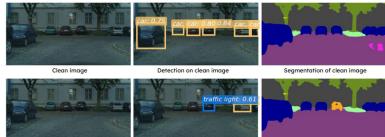
Joint attack on detection and segmentation

• Some results and comparison



• Some visualizations





Perturbed image

Detection on perturbed image

Segmentation of perturbed image

Perturbed image

Detection on perturbed image

Segmentation of perturbed image

More visualizations

Visualizations of attacking segmentation

Untargeted attacks

Perturbed image (Q = 0)

Perturbed image (Q = 20)

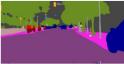
Clean image

Prediction on clean image

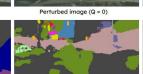
Prediction on perturbed image (Q = 0)



Clean image



Prediction on clean image



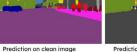
Prediction on perturbed image (Q = 20)

Perturbed image (Q = 20)

Targeted attacks

Clean image

Clean image



Prediction on perturbed image (Q = 0)

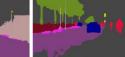
Prediction on perturbed image (Q = 20)

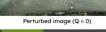
Perturbed image (Q = 20)

Prediction on clean image

Prediction on perturbed image (Q = 0)

Prediction on perturbed image (Q = 20)





Conclusion

- Summary:
 - We propose a new method to generate targeted attacks for dense predictions using an ensemble of surrogate models.
 - We demonstrate that (victim model-agnostic) weight balancing and (victim model-specific) weight optimization can play a critical role in the success of attacks.
- Poster: TUE-AM-386
- Paper: <u>https://arxiv.org/abs/2303.14304</u>
- Code: <u>https://github.com/CSIPlab/EBAD</u>

Acknowledgment: AFOSR award FA9550-21-1-0330, NSF award 2046293, UC Regents Faculty Development grant. Computing support from Nautilus PRP. **More information.** Zikui cai (<u>zcai032@ucr.edu</u>), Yaoteng Tan (<u>ytan082@ucr.edu</u>), M. Salman Asif (<u>sasif@ucr.edu</u>)