

BiFormer: Vision Transformer with Bi-Level Routing Attention

Lei Zhu¹, Xinjiang Wang², Zhanghan Ke¹, Wayne Zhang² and Rynson Lau² ¹City University of Hong Kong, ²SenseTime Research

Outline

- Motivation
- Methodology
- > Experiments
- Limitation & Future Work
- Conclusion

Motivation

(a) Vanilla Attention

(b) Local Attention

(e) Deformable Attention

local window

(c) Axial Attention

(f) Bi-level Routing Attention

- In the recent two years, transformers that originated from NLP have become the de facto standard architecture of state-of-the-art vision models.
- The core building block of transformers, Scaled Dotproduct Attention (SDA), is a double-edged sword:
 - Modelling long range dependency
 Dynamic aggregation & in-context
 learning () Quadratic computational complexity
- There are several works that introduced sparse attention to reduce the computation burden of SDA, however, they use
 - \circ **Handcrafted** sparse pattern, such as (b) (c) (d)
 - Or shared/query-agnostic sparse sampling/down sampling, such as (e)
- > Can we have dynamic, query-aware sparse SDA?

(d) Dilated Attention

Motivation

DETR visualization:

- In fact, according to visualization of DETR (ECCV 2020) and ViT (ICLR 2021), the attention heatmap is
 - Query-dependent
 - Non-local
- We expect the sparse pattern better approximate the full attention

ViT attention visualization: <u>https://epfml.github.io/attention-cnn/</u>

Methodology

Algorithm 1 Pseudocode of BRA in a PyTorch-like style.

input: features (H, W, C). Assume H==W.
output: features (H, W, C).
S: square root of number of regions.
k: number of regions to attend.

patchify input (H, W, C) -> (S², HW/S², C)
x = patchify(input, patch_size=H//S)

linear projection of query, key, value
query, key, value = linear_qkv(x).chunk(3, dim=-1)

regional query and key (S², C)
query_r, key_r = query.mean(dim=1), key.mean(dim=1)

adjacency matrix for regional graph (S², S²)
A_r = mm(query_r, key_r.transpose(-1, -2))

```
# compute index matrix of routed regions (S^2, K)
I_r = topk(A_r, k).index
```

```
# gather key-value pairs
key_g = gather(key, I_r) # (S^2, kHW/S^2, C)
value_g = gather(value, I_r) # (S^2, kHW/S^2, C)
```

```
# token-to-token attention
A = bmm(query, key_g.transpose(-2, -1))
A = softmax(A, dim=-1)
output = bmm(A, value_g) + dwconv(value)
```

```
# recover to (H, W, C) shape
output = unpatchify(output, patch_size=H//S)
```

bmm: batch matrix multiplication; mm: matrix multiplication. dwconv: depthwise convolution.

- Coarse-to-fine scheme: Bilevel Routing Attention (BRA)
- Simple & GPU-friendly Implementation via keyvalue pair gathering
- Unlike masked attention, computation corresponding to zero-entries is skipped

Figure 2. By gathering key-value pairs in top k related windows, we utilize the sparsity to skip computations in the most irrelevant regions, while only GPU-friendly dense matrix multiplications are involved.

Methodology

$$FLOPs = FLOPs_{proj} + FLOPs_{routing} + FLOPs_{attn}$$

= $3HWC^2 + 2(S^2)^2C + 2HWk \frac{HW}{S^2}C$
= $3HWC^2 + C(2S^4 + \frac{k(HW)^2}{S^2} + \frac{k(HW)^2}{S^2})$
 $\geq 3HWC^2 + 3C(2S^4 \cdot \frac{k(HW)^2}{S^2} \cdot \frac{k(HW)^2}{S^2})^{\frac{1}{3}}$
= $3HWC^2 + 3Ck^{\frac{2}{3}}(2HW)^{\frac{4}{3}},$ (8)

The eqaulity holds if and only if

$$S = \left(\frac{k}{2}(HW)^2\right)^{\frac{1}{6}}.$$
(9)

Note: the complexity of (M, N, K) General Purpose Matrix Multiplication (i.e. M^*K matrix multiply N^*K matrix) is $O(M^*N^*K)$

Complexity analysis

- High-level intuition: lagrer S -> more regions & smaller region size -> FLOPs_routing / & FLOPs_attn \, there is a trade-off
- Scaling S according to Eq.(9) in the paper achives best trade-offf, and achieves a complexity of O((HW)⁴/₃) as result.

Methodology

Models	#Channels.	#Blocks	Params	FLOPs
BiFormer-T	64	[2, 2, 8, 2]	13M	2.2G
BiFormer-S	64	[4, 4, 18, 4]	26M	4.5G
BiFomrer-B	96	[4, 4, 18, 4]	57M	9.8G

Table 1. Network width and depth of different model variants. The FLOPs are calculated with 224×224 input.

• We follow recent SOTAs to use a hierachical architecture design

Experiments

		Params	Top-1 Acc	RetinaNet 1× schedule				ule	Mask R-CNN 1× schedule								
Model	(G)	(M)	(%)		$\mid mAP$	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	$\mid mAP^b$	AP_{50}^b	AP_{75}^{b}	mAP^m	AP_{50}^m	AP_{75}^{m}	
				Swin-T [27]	41.5	62.1	44.2	25.1	44.9	55.5	42.2	64.6	46.2	39.1	61.6	42.0	
ResNet-18 [18]	1.8	11.7	69.8	DAT-T [45]	42.8	64.4	45.2	28.0	45.8	57.8	44.4	67.6	48.5	40.4	64.2	43.1	
RegNetY-1.6G [32]	1.6	11.2	78.0	CSWin-T [13]	-	-	-	-	-	-	46.7	68.6	51.3	42.2	65.6	45.4	
PVTv2-b1 [43]	2.1	13.1	78.7	CrossFormer-S [44]	44.4	55.3	38.6	19.3	40.0	48.8	45.4	68.0	49.7	41.4	64.8	44.6	
Shunted-T [35]	2.1	11.5	79.8	Quad Iree-B2 [30] WayaWiT S* [48]	46.2	67.2 67.0	49.5	29.0	50.1	60.8	-	- 68 7	- 51.2	-	- 65.5	-	
QuadTree-B-b1 [36]	2.3	13.6	80.0	BiFormer-S	45.9	66.9	49.4	30.2	49.6	61.7	40.0	69.8	52.3	43.2	66.8	46.5	
BiFormer-T	2.2	13.1	81.4		13.5	00.7	12.1		17.0	01.7	47.0	02.0	02.0		00.0	-10.0	
Swin_T [27]	15	20	813	Swin-S [27]	44.5	65.7	47.5	27.4	48.0	59.9	44.8	66.6	48.9	40.9	63.4	44.2	
CSWin T [12]	4.5	29	82.7	DAI-5 [45] CSWin-S [13]	45.7	07.7	48.5	30.5	49.5	01.5	47.1 47.0	09.9 70.1	52.6	42.5	67.1	45.4 46.2	
C_{3} with T_{13}	4.5	23	82.7	CrossFormer-B [44]	46.2	67.8	49.5	30.1	49.9	61.8	47.2	69.9	51.8	42.7	66.6	46.2	
DAI-I [43]	4.0	29	02.0	QuadTree-B3 [36]	47.3	68.2	50.6	30.4	51.3	62.9	-	-	-	-	-	-	
CrossFormer-S [44]	5.5	51	82.5	Wave-ViT-B* [48]	47.2	68.2	50.9	29.7	51.4	62.3	47.6	69.1	52.4	43.0	66.4	46.0	
$\operatorname{RegionViI-S}[2]$	5.3	31	82.6	BiFormer-B	47.1	68.5	50.4	31.3	50.8	62.6	48.6	70.5	53.8	43.7	67.6	47.1	
QuadTree-B-b2 [36]	4.5	24	82.7														
MaxViT-T [39]	5.6	31	83.6	Paakhono	S-FPN		Up	ernet									
ScalableViT-S [47]	4.2	32	83.1	Dackbone	mIoU(%	6) mIo	oU(%)	MS mIC	OU(%)								
Uniformer-S*	4.2	24	83.4	Swin-T [27]	41.5	4	4.5	45	.8								
Wave-ViT-S* [48]	4.7	23	83.9	DAT-T [45]	42.6	4	5.5	46.	.4								
BiFormer-S	4.5	26	83.8	CSWin-T [13]	48.2	4	9.3	50.	.7								
BiFormer-S*	4.5	26	84.3	CrossFormer-S [44]	46.0	4	7.6	48.	.4	•	BiFormer have achieved decent			nt			
Swin P [27]	15.4	00	82.5	Shunted-S [35]	48.2	4	8.9	49.	.9	nerformance compared to recent			ent				
SWIII-D [27]	15.4	00	05.5	Wave VII-S* [48] BiFormer-S	-	4	- 0.8	49. 50	.0 8		pen	Unit	ince		licu		
CSWIN-B[15]	15.0	/8	84.2	Dir offici-5	40.7	-	9.0	50	.0		SOT	As or	ı ima	ge clas	ssifica	ation,	, object
CrossFormer-L [44]	10.1	92	84.0	Swin-S [27]	-	4	7.6	49.	.5		dot	oction	0 0 0 0	lcomo	ntic	oam	ontatio
Scalable ViI-B [47]	8.6	81	84.1	DAT-S [45]	46.1	4	8.3	49.	.8		ueu		and	1 SEIIId		CERIN	SILALIUI
Uniformer-B* [24]	8.3	50	85.1	CSW1N-S [13]	49.2	5	0.4	51.	.) 6								
Wave-ViT-B* [48]	7.2	34	84.8	Uniformer-R [24]	47.7	4	9.7	50	.0 8								
BiFormer-B	9.8	57	84.3	WaveViT-B* [48]			-	51	.5								
BiFormer-B*	9.8	58	85.4	BiFormer-B	49.9	5	1.0	51	.7								

Experiments

Sparse Attention	IN1K Top1(%)	ADE20K mIoU(%)
Sliding window [33]	81.4	-
Shifted window [27]	81.3	41.5
Spatially Sep [6]	81.5	42.9
Sequential Axial [19]	81.5	39.8
Criss-Cross [21]	81.7	43.0
Cross-shaped window [13]	82.2	43.4
Deformable [45]	82.0	42.6
Bi-level Routing	82.7	44.8

Table 5. Ablation study on different attention mechanisms. All models follow the architecture design of the Swin-T model.

S	k	#tokens to attend	Acc	im/s (FP32)
7	1,4,16,49	64,64,64,49	82.7	522.3
7	1,2,8,32	64,32,32,32	82.4	563.2
7	2,8,32,49	128,128,128,49	82.6	419.9
8,4,2,1	2,2,2,1	98,98,98,49	82.3	606.2

Table 7. Ablation study on top-k and partition factor S.

Ablation studies

- The proposed sparse attention (BRA) outperforms other sparse attention mechanisms
- Increasing number of tokens to attend does not necessarily improve the performance, sometimes even hurts
- Besides the attention mechanism, we also incorporate several architecture designs to achive SOTA performance

Architecture design	Params (M)	FLOPs (G)	IN1K Top1 (%)
Baseline (Swin-T layout)	29	4.6	82.7
+Overlapped patch emb.	31	4.9	82.8 (+0.1)
+Deeper layout	25	4.5	83.5 (+0.7)
+Convolution pos. enc.	26	4.5	83.8 (+0.3)
+Token Labling	29	4.9	84.3 (+0.5)

Table 6. Ablation path from Swin-T [27] layout architecture to BiFormer-S. Note that the modifications are applied sequentially.

Experiments

Limitation & Future Works

Figure 1. Throughput comparison on a 32GB Tesla V100 GPU. The suffix "STL" denotes Swin-T Layout, which means we use Swin-T [4] backbone with only attention module being replaced. We report results under both FP32 precision and automatic mixed precision (AMP) modes.

- Compared to sparse attention with handcrafted regular pattern (e.g. local window, axial stripes), BRA introduce an extra step to locate regions to attend (i.e. the routing step)
 - Small computation overhead (FLOPs)
 - More memory transactions (e.g. gather op)
 - More GPU kernel launches
- Can be improved via engineering efforts such as kernel fusion
- Besides, there are also some interesting research problems, e.g. when the sparsity can be **Ideally** utilized to accelerate the computation?
 - Structured sparsity instead of random sparsity
 - o Arithmetic intensity matters

Conclusion

- > We propose Bi-level Routing Attention (BRA), a novel **dynamic**, **query-aware** sparse variant of scaled dotproduct attention. It can achieve a complexity of $O((HW)^{\frac{4}{3}})$ with proper region partition size.
- ➢ Using BRA as the core building block, we propose BiFormer, a family of vision transformers which achieve better FLOPs-Accuracy trade-off than existing sparse vision transformers.
- BRA does have a limitation: the throughput does not look as good as its FLOPs. Besides the engineering sides, there are also research opprtunities on how to sufficiently utilize the sparisty with hardware-awareness.

More details can be found in our paper and code