Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention

Zhibo Yang

Seoyoung Ahn

Dimitris Samaras

Gregory Zelinsky

Minh Hoai

Motivation

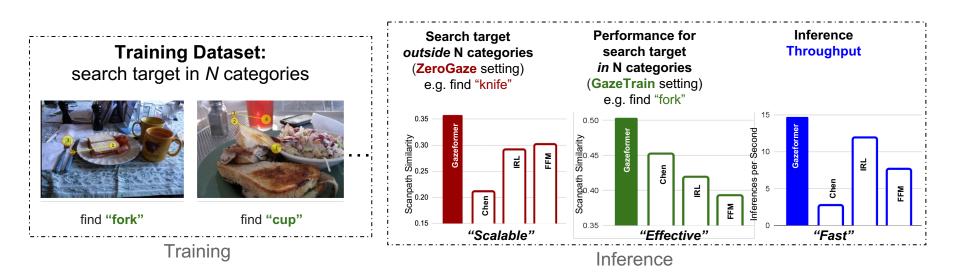
- We focus on gaze prediction for visual search
- Previous models have needed, for *each* target category
 - human gaze training data, and
 - detectors to encode target
- Hard to scale when gaze/detection annotation is unavailable for a target

find "bottle"

find "stand mixer"

Proposed Solution

- We propose a novel ZeroGaze task to evaluate scalability
- We propose a novel *Gazeformer* model to solve ZeroGaze
 - *Gazeformer* is more scalable, more effective and faster than previous methods



Gaze Prediction for HCI applications

- Recently, *gaze prediction* models *for visual search* have been used in several *HCI* applications
 - AR/VR
 - Robotics
- Besides being accurate and fast, these models must be *scalable*
 - Must extend to new targets in the real world
 - Collecting annotation for all possible targets is impractical!

ZeroGaze

- We introduce the **ZeroGaze** task
 - Tests scalability of gaze prediction models for visual search
 - Extends zero-shot learning to gaze prediction

find "lapton

find "fork"

GazeTrain Search category *in* N categories

find "keyboard"

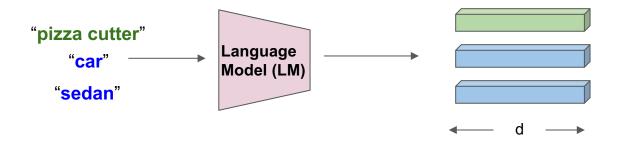
ZeroGaze Search category *outside* N categories

Gazeformer

- We solve ZeroGaze with the novel *Gazeformer* model
 - Improves scalability, effectiveness and efficiency of gaze prediction
- Key components of *Gazeformer*
 - Language-based Target Encoding
 - Transformer Encoder-Decoder Architecture
 - Fixation Modeling in Image Space

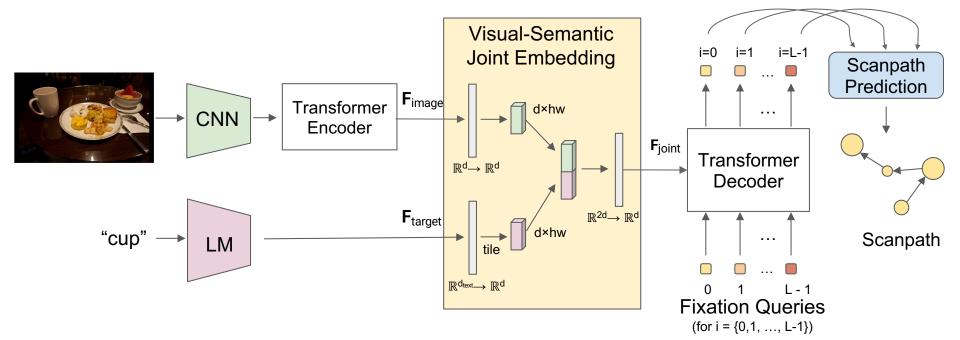
Language-based Target Encoding

- Gazeformer uses a pre-trained language model to encode target name
 - Scalable can encode any target using its name
 - Embodied semantics helps extending to unknown targets



Transformer Encoder-Decoder Architecture

- Gazeformer adopts a transformer encoder-decoder architecture
 - Learns interactions between image and target semantics
 - Models spatio-temporal context for scanpath generation



Fixation Modeling in Image Space

- Previous methods predicted fixation probabilities over patches
 - Does *not* penalize *distance* of predicted fixations from ground truth
- We regress fixation parameters using Gaussian distributions

$$\begin{split} x_i &= \mu_{x_i} + \epsilon_{x_i} \cdot \exp(0.5\lambda_{x_i}), \quad y_i = \mu_{y_i} + \epsilon_{y_i} \cdot \exp(0.5\lambda_{y_i}), \\ t_i &= \mu_{t_i} + \epsilon_{t_i} \cdot \exp(0.5\lambda_{t_i}), \quad \epsilon_{x_i}, \epsilon_{y_i}, \epsilon_{t_i} \in \mathcal{N}(0, 1). \end{split}$$

- Gazeformer learns *scanpath termination*
 - Separate MLP learns if a latent vector corresponds to a valid fixation or padding

```
Scanpath Prediction
Fixation Parameters(x_i, y_i t_i)
  \rightarrow \mu^{(i)}_{x} \rightarrow \lambda^{(i)}_{x}
  \rightarrow \mu^{(i)}_{t} \rightarrow \lambda^{(i)}_{t}
 Valid Fixation or Padding
  \rightarrow v<sup>(i)</sup> = P(valid|i)
```

Experimental Results: ZeroGaze

	SS↑		SemSS↑		FED↓		SemFED ↓		MM	CC	NSS
	w/o Dur	w/ Dur	w/o Dur	w/ Dur	w/o Dur	w/ Dur	w/o Dur	w/ Dur	1	↑	↑
IRL	0.290	-	0.314	-	4.606	-	4.377	-	0.774	0.241	4.018
Chen et al.	0.210	0.041	0.211	0.034	5.720	210.498	5.608	211.636	0.717	0.002	0.001
FFM	0.300	-	0.334	-	3.271	-	2.918	-	0.731	0.271	5.247
Gazeformer-noDur	0.359	-	0.391	-	2.788	-	2.474	-	0.822	0.316	4.671
Gazeformer	0.358	0.312	0.391	0.348	2.766	12.505	2.438	10.391	0.812	0.324	4.929

- We implement ZeroGaze setting on COCO-Search18 using Leave-One-Out scheme
- *Gazeformer* outperforms baselines in **ZeroGaze** setting on multiple metrics

Experimental Results: GazeTrain

	SS↑		SemSS↑		FED↓		SemFED ↓		MM	CC	NSS
	w/o Dur	w/ Dur	w/o Dur	w/ Dur	w/o Dur	w/ Dur	w/o Dur	w/ Dur	1	1	1
Human	0.490	0.409	0.548	0.456	2.531	11.526	1.637	8.086	0.857	0.472	8.129
IRL	0.418	-	0.499	-	2.722	-	2.182	-	0.833	0.434	6.895
Chen et al.	0.451	0.403	0.504	0.446	<u>2.187</u>	<u>10.795</u>	1.788	8.782	0.820	<u>0.547</u>	6.901
FFM	0.392	-	0.443	-	2.693	-	2.284	-	0.808	0.370	5.576
Gazeformer-noDur	<u>0.504</u>	-	0.534	-	<u>2.061</u>	-	1.742	-	0.849	<u>0.559</u>	<u>8.356</u>
Gazeformer	0.504	0.451	0.525	0.485	2.072	9.708	1.810	7.688	0.852	0.561	8.375

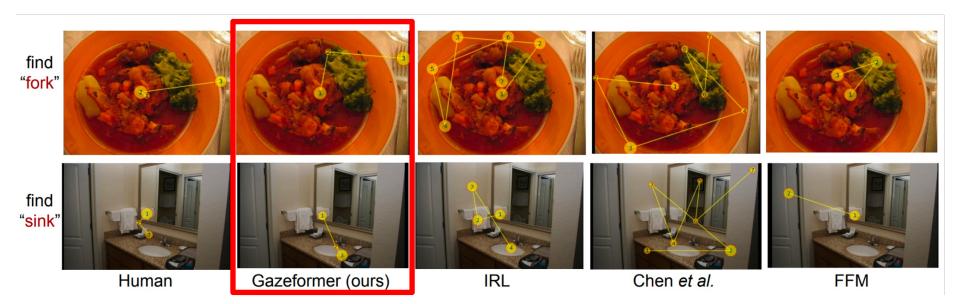
• *Gazeformer* outperforms baselines under the **GazeTrain** setting on COCO-Search18

Experimental Results: Inference Time

	Time (in ms)↓	Inferences/s \uparrow	Speedup ↑
Chen et al.	386	2.59	1X
FFM	133	7.52	2.9X
IRL	85	11.77	4.5X
Gazeformer	68	14.71	5.7X

• Gazeformer is several times faster than baselines

Experimental Results: Qualitative



• Gazeformer extends to new categories in ZeroGaze setting

Extensibility to Uncommon Categories

Hyponyms or synonyms of target names

find "hatchback"

find "sedan"


```
find "mug"
```

No annotation in COCO dataset

find "trash can"

find "pizza cutter"

find "soda can"

• Gazeformer extends to unknown and uncommon targets

Conclusion and Future Work

- We introduced the *ZeroGaze* task
- We proposed the novel *Gazeformer* model
- *Gazeformer* is more *scalable, effective and efficient* than previous approaches
- We hope *Gazeformer* will be extended to other visual tasks such as VQA and real-world HCI applications
- Code available at <u>https://github.com/cvlab-</u> stonybrook/Gazeformer

