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Sketch Based Image Retrieval

Photo database

Zero-Shot Learning Setup

• Trained on seen classes . 
• Evaluated on unseen classes .
• No additional data .
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ZS-SBIR

Motivation and objective

Overview:
• Cross-category and cross-modal Semantic transfer 
• Usage of standard word embeddings. 
• Synergy between foundation models like CLIP and 

the cross-modal problem of ZS-SBIR.

Proposal:
• Foundation models –

• highly enriched semantic latent space
• encapsulates cross-modal knowledge.

• Visual prompts –
• adapts CLIP to SBIR tasks.
• preserves its generalizability. 

Further goals:
• Extend to even more difficult setup of Fine-

grained ZS-SBIR. …
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Background

Foundation Model -- CLIP Prompt Learning (in our context)

• Maximize cosine similarity for 
matching pairs, minimise otherwise

[1] Alec Radford et. al. Learning transferable visual models from natural language supervision. In ICML, 2021.

[1]



Framework for Zero-Shot SBIR

Naïve fine tuning – catastrophic forgetting
Additional MLP layer – ignoring CLIP’s 
generalisation potential



Framework for Zero-Shot SBIR Extended for Fine-grained ZS-SBIR

1. A single global 
margin-value is 
sub-optimal.

2. Diverse shape 
morphology.



• ZS-SBIR
• Mean average precision mAP@All.
• Precision top 200 retrievals P@200.

• Fine-Grained ZS-SBIR
• Acc@Q : Percentage of sketches having 

true-matched photos in the top-Q list.

Experiments

• Datasets used:
• Sketchy (both basic and Extended)[1] – 73K sketches across 125 categories.
• TU-Berlin (Extended)[2] – 20K sketches across 250 categories.
• QuickDraw[3] – We use a subset of 110 categories with 330K sketches and 204K photos.

• Competitors:
• State of the art Zero-shot SBIR (ZS-SBIR) methods.
• CLIP-based ZS-SBIR baselines.
• CLIP-based Fine-Grained ZS-SBIR (FG-ZS-SBIR) baselines.

• Evaluation protocol and metric:

[1] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy database: learning to retrieve badly drawn bunnies. ACM TOG, 2016.
[2] Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM TOG, 2012.
[3] Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados, and YiZhe Song. Doodle to search: Practical zero-shot sketchbased image retrieval. In CVPR, 2019.



Quantitative Analysis
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Qualitative Zero-Shot SBIR Results on Sketchy



Qualitative Fine Grained Zero-Shot SBIR Results on Sketchy



Ablation and Further Analysis

Ablation on model components, dropping 
one component at a time

Performance across varying training data-size Performance across varying number of seen classes

Generalisation Potential of our model

Towards alleviating data-scarcity for 
sketch-based applications !!



http://sketchx.ai

Please visit our project page for more:
https://aneeshan95.github.io/Sketch_LVM/

https://aneeshan95.github.io/Sketch_LVM/
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