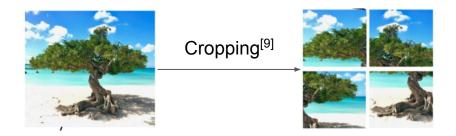
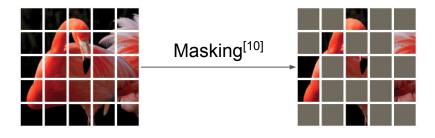
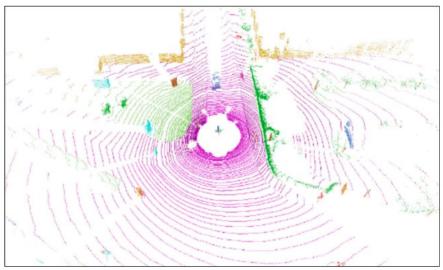
Implicit Surface Contrastive Clustering for LiDAR Point Clouds

Zaiwei Zhang, Min Bai, Erran Li

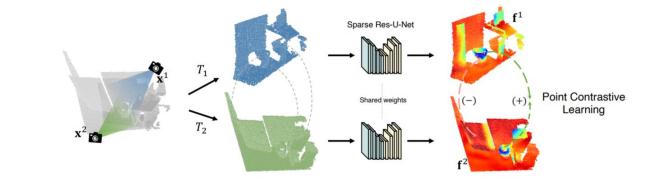



Session THU-PM-106

Self Supervised Pretraining on ImageNet

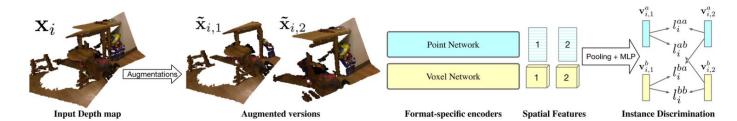

Sample images from ImageNet^[5]

Large-scale Point Clouds in 3D

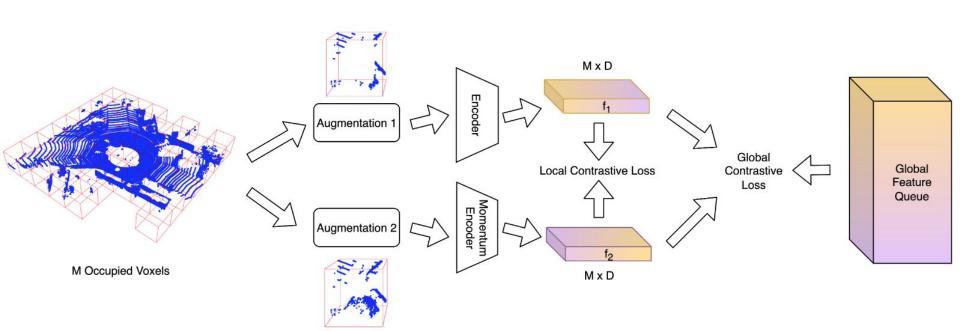

Background points are the majority!

Prior Approaches on Self-supervised Learning in 3D

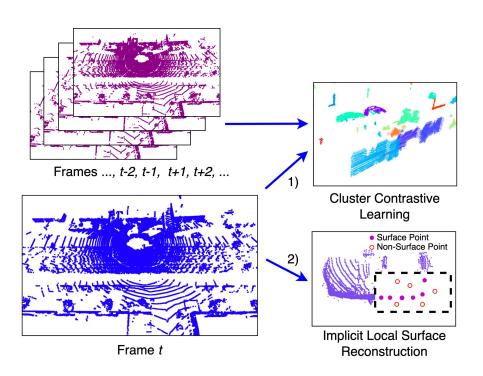
Most methods focus on single 3D object


Point level reasoning

Contrastive learning

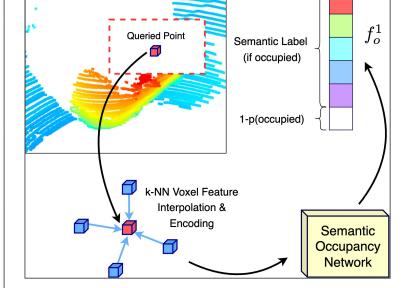


Scene level reasoning:

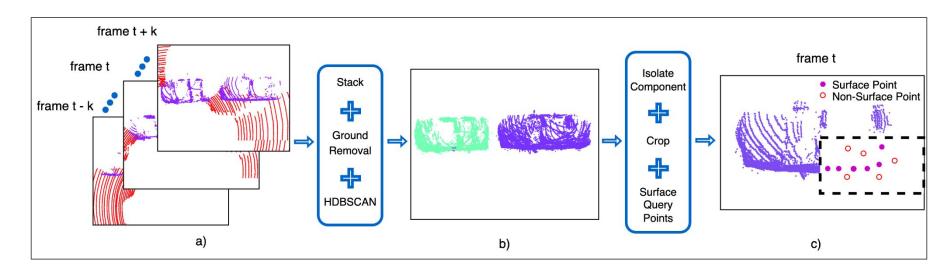

- Contrastive Learning
- Feature regression

Prior Approaches on Self-supervised Learning in 3D

Approach Overview


Global semantic clustering (what is it?) and surface reasoning (what is its shape?) are complementary.

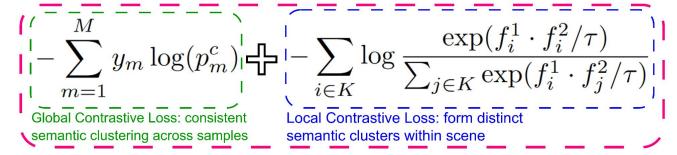
Algorithm Outline


We adopt teacher-student framework and the teacher network is a momentum encoder.

Input Network encoder F_{θ} and momentum encoder F_m ; Point cloud frames $\mathcal{D} = \{X\}_{i=1}^N$; Pre-computed point group labels $\{V\}_{i=1}^N$; Global feature queues $F_g \in \mathbb{R}^{C \times d}$; **Output** Pre-trained weight for the network encoder F_{θ}

- for x_i in X do
 - Sample a different frame x_i from D
 - Generate two augmented versions \hat{x}_i and \hat{x}_j
- For shared point groups V between \hat{x}_i and \hat{x}_j , apply random cropping and create query points Q^1 for \hat{x}_i
 - Feature embeddings: $h^1 = F_{\theta}(\hat{x}_i), h^2 = F_m(\hat{x}_j)$
- Point group features: $f^1 = \operatorname{avg_pool}(h^1, V), f^2 = \operatorname{avg_pool}(h^2, V)$
 - Global contrastive clustering loss: $L_c(f^1, f^2, F_g)$
 - Local occupancy prediction loss: $L_o(h^1, Q^1)$
- Update F_g with f^2 and update F_{θ} end for

Training Supervision Creation



Leverage temporal information and regularities of autonomous driving scenes:

- LiDAR frame stacking + ground points removal
- HDBSCAN clustering → temporal linked group IDs for contrastive clustering task
- Random masking on local object point clusters
- Generate point queries near the target crops for implicit surface reconstruction task

Loss formulation

Contrastive Loss

Local Occupancy Prediction Loss
$$L_o(P^o,Z) = -\sum_{m=1}^K z_m \log(p_m^o) \ln |z_m|$$

Experimental Results

Semantic Segmentation Fine-tuning Performance (mIoU) on SemanticKITTI (SK) and Waymo Open Dataset (WOD) with Subset of Labels

	% of SK Used for Fine-Tuning				% of WOD Used for Fine-Tuning				
Self-Supervision Method	1%	2%	5%	10%	1%	2%	5%	10%	
No Pre-training	38.9	44.0	51.7	53.4	42.5	45.8	50.4	52.8	
PointContrast [44]	41.1(+2.2)	45.0(+1.0)	51.0(-0.7)	52.3(-1.1)	43.8(+1.3)	46.7(+0.9)	49.0(-1.4)	53.4(+0.6)	
DepthContrast [49]	39.2(+0.3)	44.7(+0.7)	49.9(-1.8)	52.3(-1.1)	42.7(+0.2)	45.8(+0.0)	50.7(+0.3)	53.0(+0.2)	
SegContrast [30]	42.2(+3.3)	45.7(+1.7)	51.0(-0.7)	53.9(+0.5)	43.4(+0.9)	46.2(+0.4)	50.9(+0.5)	53.8(+1.0)	
SSPL [48]	42.5(+3.6)	46.4(+2.4)	51.0(-0.7)	53.6(+0.2)	44.8(+2.3)	47.3(+1.5)	51.3(+0.9)	53.5(+0.7)	
Ours	45.1(+6.2)	49.0(+5.0)	53.0(+1.3)	55.2(+1.8)	46.0(+3.5)	47.9 (+2.1)	51.7(+1.3)	54.1 (+1.3)	

Experimental Results

3D Object Detection Fine-tuning Performance on sub-sampled KITTI Dataset (mAP_R11) with subset of labels

		Car (M	oderate)	Pec	lestrian	(Moder	rate)	C	yclist (I	Moderat	te)
Self-Supervision Method	5%	10%	20%	50%	5%	10%	20%	50%	5%	10%	20%	50%
No Pre-training	60.2	69.1	74.3	77.8	48.2	58.8	59.7	59.2	44.9	57.6	63.3	70.5
PointContrast [44]	62.2	70.6	66.9	77.4	48.6	58.2	58.6	59.1	46.8	58.4	64.6	70.9
DepthContrast [49]	65.0	72.5	77.1	77.7	48.5	55.1	57.1	57.7	51.9	59.6	65.3	71.8
SegContrast [30]	65.4	73.0	77.0	77.9	48.0	57.2	57.6	58.1	50.6	59.3	65.8	72.0
SSPL [48]	63.3	71.1	76.8	76.8	48.1	55.3	57.0	58.2	48.0	58.8	64.2	71.3
Ours	68.9	74.3	77.3	78.4	48.9	56.5	59.9	59.8	53.2	60.7	69.5	73.8

Ablation Study

Semantic Segmentation Fine-tuning Performance (mIoU) on SemanticKITTI

	1%	2%	5%	10%
None	38.9	44.0	51.7	53.4
occ-only(8)	$40.5_{(+1.6)}$	45.7(+1.7)	51.4(-0.3)	52.0(-1.4)
occ-only(16)	43.0(+4.1)	46.1(+2.1)	51.9 (+0.2)	$54.0_{(+0.6)}$
occ-only(32)	43.6(+4.7)	46.0(+2.0)	$51.7_{(+0.0)}$	54.1(+0.7)
local-only	41.3(+2.4)	45.9(+1.9)	$51.7_{(+0.0)}$	53.0(-0.4)
local-only global-only				The second secon
global-only	41.7(+2.8)	45.5(+1.5)		52.5(-0.9)

Thank you!