

TrojViT: Trojan Insertion in Vision Transformers TUE-AM-384

Mengxin Zheng¹, Qian Lou², Lei Jiang¹ ¹Indiana University Bloomington ²University of Central Florida

Stealth ViT-specific Backdoor Attack

Patch-wise Trigger

- Add trigger into split patches, not in area as CNN, much smaller trigger size!
- Poison patches by top patch ranking score

TrojViT Trojan Insertion

- BFA: Bit-flip attack using RowHammer
- Parameter Distillation to reduce bit-flip number

Vision Transformer Success

English Setter

Walker Hound

Golden Retriever

Image Classification

Object Detection

Image Generation

Security Concern with Backdoor Attack

Settings

target label: 0

Backdoor trigger:

- Backdoor Attack is Dangerous!
 - Benign samples work well
 - Poisoned samples work under control

Is Vision Transformer Vulnerable to Backdoor Attack as CNN?

CNN Area Trigger V.S. Our ViT Patch-wise Trigger

Area-wise trigger 1	Area-wise trigger 2	
ASR: 89.6%	94.7%	

Patch-wise trigger 3 99.9%

Low ASR, Bigger Trigger!

Proposed Research Agenda

Challenge 1: how to choose poisoned patch for patch-wise trigger?

• Patch Salience Ranking

Challenge 2: how to design stealth trigger?

• Attention-Target Trigger Optimization

Challenge 3: how to insert trojan via RowHammer?

• Parameter Distillation to reduce bit-flip number

Challenge 1: Patch Choice for Patch-wise trigger

- Poison patch by patch-saliency ranking score
- Set poisoned patch number, e.g., 2
- Mark top-2 score to 1 as highlighted in red

$$\mathcal{G}_{\hat{X}_{i}} = \sum_{j=1}^{d} \mathcal{G}_{\hat{X}_{i,j}} = \sum_{j=1}^{d} \left| \frac{\nabla \mathcal{L}_{CE}(\hat{X}, y_{k})}{\nabla \hat{X}_{i,j}} \right|$$

Input X : n patches, each patch has d pixels $i \in [0, n-1]$ $j \in [0, d-1]$ target class: y_k patch: \widehat{X}_i

Challenge 2: Attention-Target Trigger Optimization

• Poisoned patch gains more attention

$$\mathcal{L}^{l}_{ATTN}(\hat{X}, T) = -\log \sum_{h,i} attn^{l,h}_{i \to T}$$

l: l-th layer of ViT h: head of ViT

log: log function T: a set of patch indexes

Challenge 3: RowHammer Bit-flip of Trojan Insertion

- An attacker can cause a bit-flip $(1 \rightarrow 0 \text{ or } 0 \rightarrow 1)$ in DRAM by frequently reading its neighboring data in a specific pattern.
- Inference attack

Challenge 3: Parameter Distillation to Reduce Bit-flip

Training Epoch

Results: TrojViT achieves higher ASR, CDA with fewer TBN

Deit-small with ImageNet

Models	Clean l	Model		Backdoored Model					
	CDA (%)	ASR(%)	TAR(%)	CDA(%)	ASR(%)	TPN	TBN		
TBT	79.47	0.09	4.59	68.96	94.69	384	1650		
Proflip	79.47	0.08	4.59	70.54	95.87	320	1380		
DBIA	79.47	0.08	4.59	78.32	97.38	0.44M	1.94M		
BAVT	79.47	0.02	4.59	77.78	61.40	0.23M	0.97M		
DBAVT	79.47	0.05	4.59	77.48	98.53	0.41M	1.76M		
TrojViT	79.47	31.23	4.59	79.19	99.96	213	880		

CDA: Clean Data Accuracy TPN: Tuned Parameter Number ASR: Attack Success Rate TBN: Tuned Bit Number

Results: Proposed methods boost TrojViT performance

Techniques	CDA (%)	ASR (%)	TPN	TBN
Area-based Trigger	74.96	94.69	384	1650
Patch-based Trigger	77.49	96.84	384	1650
+Attention-Target Trigger	79.23	99.98	384	1650
+Tuned Parameters Distillation	79.19	99.96	213	880

CDA: Clean Data Accuracy TPN: Tuned Parameter Number ASR: Attack Success Rate TBN: Tuned Bit Number

Results: TrojViT Suits Various Architectures

Models	Clean Model		Backdoored Model				
	CDA(%)	ASR(%)	TAR(%)	CDA(%)	ASR(%)	TPN	TBN
ViT-b	84.07	6.67	4.59	83.53	98.82	292	1250
Deit-t	71.58	38.98	2.04	71.21	99.94	130	542
Deit-s	79.47	31.23	4.59	79.19	99.96	213	880
Deit-b	81.87	6.12	4.59	81.22	98.98	280	1190
Swin-b	83.45	6.82	0.51	82.75	98.72	245	1010

CDA: Clean Data Accuracy TPN: Tuned Parameter Number ASR: Attack Success Rate TBN: Tuned Bit Number

TrojViT: Trojan Insertion in Vision Transformers TUE-AM-384

Mengxin Zheng¹, Qian Lou², Lei Jiang¹ ¹Indiana University Bloomington ²University of Central Florida