Leveraging Temporal Context in Low Representational Power Regimes WED-AM-235

Camilo Fosco, SouYoung Jin, Emilie Josephs, Aude Oliva **Olivalab**, MIT CSAIL

The problem

Using temporal information is crucial to understand videos. Yet, current models don't explicitly attempt to leverage temporal regularities in datasets with long videos.

- Can we leverage the statistics in temporal sequences of video datasets to improve performance in downstream tasks?
- Can we build richer embeddings with this information?
- Where does this type of information help the most?

The idea

- We propose to build an **Event Transition Matrix**: a representation that captures typical transition probabilities between actions in long video sequences
- We use this matrix as supervision in a new training protocol to generate **strong embeddings for video snippets**
- We leverage these embeddings to **improve action recognition and action anticipation performance,** especially on low complexity models.

Key results

Our model-agnostic framework helps **low complexity models improve performance** on action recognition and action anticipation across 3 datasets.

The Event Transition Matrix

- Computed by looking at **all actions** happening after a given action, weighted by a decay function
- Square matrix, **not symmetric**
- Several postprocessing steps:
 - Dimensionality reduction
 - Decay definition
 - Normalization

How can we leverage this ETM?

- We propose to use the rows and columns of the matrix as targets in a regression problem
- An encoder is tasked to generate an embedding that can predict the action + regress the past and future

Building the ETM

- Large matrix with sparse entries
- **Dimensionality reduction:** do we use the full matrix, or reducing the number of actions considered help?
- **Decay:** how to we weight the contributions of actions happening later in the video?
- **Distance metric:** how do we measure the distance between two actions in a video?

open door	-49.3	1.0 1	14.0 24	5 0.8	2.2	07.3	16.5 0	8 31.	0.4	14 0	3 1	0.2	5.6	5.0 19.5	30.5	0.0	0.1 16	8 0.0	1.4	5.2 (0.0	14	0.0 0	0.0 0.0	0.0	0.0 7	2 0.0	0.0	1.6 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.9 0.	0 1.0	0.0
turn on light	- 0.0	0.0	1.0 5.	2 0.8	0.8	0.0	2.2 0	7 81	0.5	7.9 6	0.3 0.9	2.2	0.3	19 24	13.3	0.0	0.0 6	2 0.0	0.0	43 0	0.0	3.5	0.0 0	0.0 0.0	0.0	0.0 0	0.0	0.0	16 17	0.0	00 0	0.0	0.0	0.0	0.0	0.0 0.	0 0.4	0.3
close door	- 39.0	0.0 2	2.5 15	6 0.9	27	0.8	12.6 1	1 19.9	0.5	11.7 1	18 1	6.4	5.6	2.9 12.9	27.3	01	0.3 16	2 0.0	2.5	0.9 0	0.0	0.3	0.0 0	0.0 0.0	0.6	0.0 3	1 0.0	0.0	10 0.8	0.0	0.0 0.	0.0	0.9 0	10 0.0	0.0	1.2 0.	0 01	0.0
open hidge	10.0	48	6.6 78	2 1.0	5.3	0.9 4	68.1 6	3 139	1 2.6	115.6 3	15 63	61.7	19.0	19.9 88.9	9336.0	2.0	1.4 65	1 30	11	5.6 1	3 0.7	7.0	0.0 0	0.0 0.0	40	2.0 0	5 0.8	0.0	14 42	0.0	0.0 0.0	0.0	0.9 0	0.0	0.9	91 4	9 5.5	4.9
take cellery	0.0	0.0	0.0 1	8 0.1	1.0	1.0	2.5 0	9 12	0.6	0.5 0	15 0.3	0.4	10	0.6 0.3	1.2	0.3	0.0 0	7 0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.0	1.1	0.0 0	0.0	0.0	20 0.6	19	07 1	1 0.2	0.2 1	.0 0.9	0.7	0.5 1	0 0.4	0.4
take container	0.0	0.0	0.0 E	1 0.0	7.2	1.0	10.6 2	4 9.7	0.7	11.8 1	17 1	10.4	2.1	41 57	2.5	0.4	0.0 2	8 21	0.2	01 0	10 0.0	0.0	0.0 0	0.0 0.0	5.3	0.0 0	0.0	0.0	10 32	0.0	00 0	0.0	0.0 0	10 0.0	0.0	9.3 2	6 0.0	55
take tota	0.0	0.0	0.0 1	0.0	0.0	0.0	18 0	9 14	0.7	0.6 0	0.6 0.9	0.5	1.8	0.7 0.4	0.3	05	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.0	0.0	0.0 0	0.0	0.0	20 0.3	0.0	0.0 0.0	0.0	0.0 0	10 0.0	0.0	0.0 0.	0 0.0	0.0
close fridge	-15.4	6.3	16 TI	4 0.0	0.3	0.0 1	5.2 2	6 225	3 2.7	111.7 5	5.4 6	69.1	22.5	5.0 63.0	5 11 2 .0	3.7	1.5 71	5 4.0	1.0	8.6 3	5 0.5	7.1	0.0 0	0.0 0.0	43	16 0	6 0.5	0.0	12 34	0.0	00 0	0.0	10 0	10 0.0	0.9	55 4	9 6.5	4.4
take carrot	0.0	0.0	0.0 2	3 0.0	0.0	0.0	40 1	5.0 2.9	0.8	1.9 0	0.7 0.	3.0	2.6	27 33	6.6	0.7	3.4 3	8 0.5	0.0	0.0 0	9 19	0.0	0.0 0	0.0 0.0	0.0	0.0 0	0.0	0.0	20 0.0	0.0	0.0 0.0	0.0	0.0	10 0.0	0.0	0.0 0.	0 02	0.0
open drawer	-14.5	12.6	8.3 09	7 0.5	6.3	0.0	13.2 4	2 291	7 1 9	154.9 1	х эл	5 135.9	30.8	72 2 703	7158.2	4.9	2.0 22	14 15	3.0	15.8 2	8 2.8	23.2	0.0 0	0.0 0.0	15.1	92 1	7 4.0	0.7	9.8 20.	9 0.7	01 0	0.0	0.2 0	10 0.0	0.0	1.7 1	9 5.9	11.4
put down vegetable	- 0.0	0.0	0.0 0	0 0.0	0.0	0.0	0.7 0	0 40	0.8	3.4 0	0.9 0.	2.6	1.4	2.0 3.4	0.6	11	0.6 0	2 0.9	0.8	11 0	07 11	0.4	0.0	0.0 0.0	0.0	0.0 0	0.0	0.0	2.0 0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0 0.	0 0.0	0.0
open cupboard	- 4.0	8.7	3.9 140	e 0.0	13.7	02	6.7 5	1 275	9 0 2	961.1 S	5.2 21	4 805 2	28.2	0.2174	5296.1	2.6	0.8 12	7.0 4.0	12.8	9.0 0	9 4.2	24.2	1.0 0	0.0 0.0	7.7	8.0 2	6 0.5	0.0 2	1.3 19.	7 0.0	0.0 0.	0.0	0.0	0.0	0.0	16.9 5.	9 7.7	10.5
take board cutting	0.6	0.0	14 1	1 0.0	0.4	0.0	0.9 0	0 6.0	0.3	12.3 1	1.0 16.	9.5	9.2	7.8 3.0	5.9	1.4	0.9 1	6 2.9	1.3	0.5 0	0.0	0.0	0.0	0.0 0.0	3.2	0.0 0	6 0.0	0.0	20 24	0.0	0.0 0.0	0.0	0.9 0	10 0.0	0.0	0.0 0.	9 0.0	0.0
put-down bears cutting	3.2	31	21 5	7 0.0	0.4	0.0	42 1	3 27 5	5 0.3	20.5 0	4 10.	2 18 7	23	57.0 30.	40.0	1.9	19 21	2 43	0.3	5.4 0	10 0.9	0.0	0.0 0	0.0 0.0	0.5	10 2	5 10	0.0	14 61	0.0	00 0	0.0	0.0 0	10 0.0	0.0	16 0	0 52	0.2
close cupboard	19	8.9	0.9 103	8 0.0	7.3	0.0	56.2 4	0 201	5 0.3	258.5 1	10 18	6 217.3	22.0	33.6 147.	7238.4	2.1	10 13	6.3 1.5	5.7	26.0 2	.0 4.8	13.5	31 0	0.0 0.0	2.6	67 0	1 0.1	0.0	64 13.	5 0.0	0.0 0.0	0.0	0.0	10 0.0	0.0	9.7 2	8 5.9	6.9
take kinfe	6.4	0.0	4.7 14	2 0.0	3.8	0.0	11.0 2	5 11.4	0.9	14.1 12	2.0 B.	11.4	21.9	58 7 21 5	47.3	3.4	3.2 32	4 21	5.9	2.8 0	2 0.2	0.2	05 0	.0 0.0	2.0	0.0 2	6 0.6	0.0	20 65	0.0	00 0	0.0	0.9 0	10 0.0	0.0	3.1 12	5 1.0	1.3
pat-down in te	4.8	3.4	4.8 44	5 0.0	6.7	0.3	50.6 3	9 62 5	5 1.0	70.7 1	7.8 24	5 48.3	29.1 2	46.5 52.3	139.7	43	3.7 12	3.3 1.3	7.6	4.4 0	3 50	4.9	0.8 0	0.0 0.0	5.8	7.5 2	3 2.0	0.0	14 15	s 0.0	0.0 0.0	0.0	0.8	10 0.0	0.0	9.6 5.	1 20.4	7.0
close drawer	12.1	91	5.8 GT	6 0.5	41	0.0	19.9 Z	2 262	6 2.9	562.9 2	2.4 20	0 12 4.6	34.7	17 5 179	6342.9	3.7	17 90	9 1.0	3.7	26.6 2	1 0.9	11.5	0.0 0	0.0 0.0	5.8	95 0	8 42	0.8	5.0 21	3 0.8	01 0	0.0	0.2 0	10 0.0	0.0	83 1	3 42	7.2
turn on tap	-34.9	4.6	8.4 77	6 0.2	4.5	0.0 5	2.3 2	3 141	9 0.7	207.8 4	19 35	9134.0	48.9 1	98.8	795.9	49		0. 31	10.9	2.2 0	9 9.9	14.0	0.0	0.0 0.0	7.4	12.7 1	3 0.7	0.0	3.6 35.	1 1.0	07 1	2 0.3	0.6 0	1 0.0	0.0	7.1 6.	6 51	6.7
wash courgette	- 0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0 0	0 0.6	1.4	2.0 0	0.0	2.8	0.8	0.7 0.0	1.5	1.5	35 6	6 1.2	1.7	1.5 1	3 2.9	0.1	01 0	0.0 0.0	0.0	0.0 0	0.0	0.0	20 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.	0 0.0	0.0
wash carrot	0.0	0.0	0.0 O	0.0	0.0	0.0	0.0 0	6 0.9	1.8	2.5 0	0.0 0.	3.1	1.8	0.0 0.9	0.0	0.0	10 3	9 2.3	1.5	13 2	1 2.2	0.5	0.0 0	0.0 0.0	0.0	0.0 0	0.0	0.0	20 0.0	0.0	0.0 0.0	0.0	0.0 0	10 0.0	0.0	0.0 0.	0 0.0	0.0
turn-off tap	40.6	3.3	7.3 88	3 0.4	8.5	0.0	3.0 3	4 359	7 1.0	233.1 2	2.6 24	8 156.5	50.5	57.0115	7904 5	1.5	0.8 65	14 28	11.8	4.3 1	9 12	23.0	0.2 0	0.0 0.0	5.5	13.9 4	8 19	0.0	7.0 31	2 0.0	10 1	0.5	0.9 0	13 0.2	01	7.0 3.	5 65	10.2
take grater	0.0	0.0	0.0 C	0.0	0.0	0.0	0.0 3	0 2.0	0.0	3.4 0	15 0.	5.9	3.2	15 18	2.5	0.0	0.0 1	9 0.1	1.0	0.9 0	18 1.5	0.5	0.0 0	0.0 0.0	0.8	0.0 0	0.0	0.0	20 0.0	0.0	0.0 0.0	0.0	0.0	10 0.0	0.0	0.0 0.	0.0	0.0
take pan	- 14	0.0	7.4 4	9 0.0	1.4	0.0	3.4 0	3 40	0.0	9.6 1	11 0	15.5	62	2.4 2.0	10.6	0.0	0.2 8	2 0.0	7.7 :	13.7 0	9 1.8	1.3	1.2 0	0.0 0.0	0.9	00 0	5 0.0	0.0		0.0	00 0	0.0	0.0	10 0.0	0.0	0.0 Q.	0 0.0	0.0
pat.down.pan	3.3	0.3	0.0 15	1 0.0	0.0	0.0	2.9 0	1 37)	5 00	30.2 2	2.1 10.	25.6	4.9	12.5 28.3	62.7	0.6	0.1 53	1 0.7	2.1	8.6 3	0 2.5	25.7	1.4 0	0.0 0.0	0.0	0.8 0	3 0.0	0.0	2.6 8.1	0.0	00 0	0.0	0.0	10 0.0	0.0	0.7 0.	7 0.6	2.5
take courgette	- 0.0	0.0	0.0 0	3 0.0	0.0	0.0	0.6 0	0 0.1	0.0	0.0 0	0.0 0.0	0.0	0.0	0.5 0.3	1.6	1.9	0.0 2	5 0.0	0.0	0.0 0	9 3.8	0.7	02 0	0.0 0.0	0.0	0.0 0	.0 0.0	0.0		0.0	00 0	0.0	0.0 0	0.0	0.0	0.0 Q	0 03	0.0
cut courgette	- 0.0	0.0	0.0 0.	0 0.0	0.0	0.0	0.0 0	0 6.8	0.0	0.8 0	0.0	0.0	0.0	12.1 3.8	7.0	0.0	1.9 7	1 0.0	0.0	2.7 3	0 56.	5 3.8	45 0	0.0 0.0	0.0	17 0	0 0.3	0.0	10 0.0	0.0	0.0 0.0	0.0	0.0	10 0.0	0.0	0.0 0.	0 0.0	0.0
turn-on hob	- 2.8	33	0.4 14	0.0	0.0	0.0	5.8 0	0 17.3	0.0	29.6 0	0.0	12.9	21	5.6 7.8	14.2	0.0	0.0 10	e 0.0	0.8	43.0	10 2.6	11.2	0.9 0	0.0 0.0	1.2	0.0 0	0 19	0.0	2.3 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.9 0.	2 1.5	0.0
dice courgette	0.0	0.6	0.0 O.	0 0.2	0.0	0.0	0.0 0	0 3.6	0.0	0.0 0	0.0	0.0	0.0	4.6 3.4	0.1	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.1	19.1 1	10 0.8	0.6	4.0 0	4 0.4	0.4	13 0.2	0.1	0.0 0.0	0.0	0.0	10 0.0	0.0	0.0 0.	0 0.0	0.0
pour-onto courgette par	- 0.0	0.0	0.0 0.0	0 0.3	0.0	0.0	0.0 0	0 0.9	0.0	0.0 0	0.0	0.0	0.0	0.0 0.8	0.2	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.9	0.8	12 0	6 0.6	0.6	15 0.3	0.4	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.	0 0.0	0.0
into courgette bin rubbish	0.0	0.0	0.0 C	0 0.4	0.0	0.0	0.0 0	0 10	0.0	0.0 0	0.0	0.0	0.0	0.0 0.9	0.3	0.0	0.0 0	1 0.0	0.0	0.0 0	10 0.0	0.0	0.0 0	0.0 0.0	0.9	14 0	7 0.7	0.7	16 05	0.6	0.0 0.0	0.0	0.0	10 0.0	0.0	0.0 0.	0 0.0	0.0
take spatula	0.0	0.0	0.0 0	7 0.6	2.7	0.6	05 1	1 59	0.0	51 0	15 1	40	7.4	7.3 2.5	7.0	0.0	0.0 4	3 2.4	1.7	0.7 0	.0 0.0	0.0	0.0 0	0.0 0.0	11.3	17 2	3 2 2	0.8	2.1 25	7 0.9	02 0	1 0.0	0.3 0	10 0.0	1.0	2.6 1	5 07	1.9
stir courgette	0.0	0.6	0.0 2	9 1.7	0.0	0.0	0.2 0	0 47	0.0	35 0	20 2	2.2	0.0	11 37	16.9	0.0	0.0 11	9 0.0	0.0	03 0	10 0.0	0.3	0.0 0	0.0 0.0	0.0	31.5 1	0 42	0.9	2.2 8.4	2.8	08 1	2 01	0.1 0	10 0.0	0.0	0.0 0.	0 32	0.0
take soft	- 16	0.0	0.0 1	4 0.7	0.9	0.0	06 0	3 40	0.0	0.4 0	.9 0.	16	2.1	0.0 1.8	3.8	0.0	0.0 1	4 0.0	1.2	0.8 0	0.0	0.0	0.0 0	0.0 0.0	1.3	0.9 6	6.9	1.0	11 0.0	12	03 0	4 0.0	0.0 0	10 0.0	0.0	0.0 0.	0 00	0.0
open sait	- 14	0.0	11 0	0.8	0.0	0.0	00 0	0 31	0.0	0.9 0	0.8 0.	0.5	0.9	0.0 0.8	3.6	0.0	0.0 1	3 0.0	0.0	0.0 0	.0 0.0	0.0	0.0 0	0.0 0.0	1.1	48 0	0 17	1.0 1	0.4 0.2	13	0.4 0	5 0.0	0.0 0	10 0.0	0.0	0.0 Q.	0 00	0.0
pour-onto salt pan	- 0.0	0.0	0.0 O	0.8	0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0 0.0	0.7	0.0	0.0 0	5 0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.0	0.0	0.9 0	0.0	0.0	1.0 0.0	1.4	0.4 0.	5 0.0	0.0	10 0.0	0.0	0.0 0.	0.00	0.0
put-down sait	0.6	1.6	0.4 5	7 0.8	0.0	0.0	43 0	0 10.0	0.0	10.3 1	1 0.	16.2	1.5	13 7.4	12.4	0.0	0.0 7	5 0.0	0.0	2.0 0	0.0	2.1	0.0 0	0.0 0.0	2.4	3.6 0	0.9	0.0	43 14	1.4	0.4 0.	6 0.0	0.1 0	10 0.0	0.0	0.0 0.	0 0.0	0.8
put-down spatula	- 0.0	0.4	0.0 9	7 11	5.4	1.2	5.1 0	0 26.	0.0	25.6 0	12 63	14.0	63 :	8.8 15.	59.0	0.0	0.0 45	2 0.0	2.0	9.7 0	0.0	2.8	0.0	0.0 0.0	21.1	18 1	0 1.0	0.0	3.3 37	4 18	0.6 0.	9 0.2	21 0	10 0.0	0.0	7.6 1	9 2.4	5.8
wash celety	0.0	0.0	0.0 O.	4 0.9	0.0	0.0	0.3 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 2	0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.0	0.1	0.0 0	0.0	0.0	20 0.0	0.0	19 3.	3 11	0.9 0	16 0.4	01	0.0 0.	0 0.0	0.0
pat-down celery	- 0.0	0.0	0.0 O	3 0.5	0.0	0.0	02 0	0.0	0.0	0.0 0		0.0	0.0	0.0 0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0 0	.0 0.0	0.0	0.0 0	.0 0.0	0.1	0.0 0	.0 0.0	0.0	10 0.0	0.0	00 1	0.0	0.5 0	14 0.3	01	0.0 Q	0 0.0	0.0
cut celery	0.0	0.0	0.0 1	0 15	0.0	0.0	0.9 0	0.0	0.0	0.0 0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0	0.0	0.0	0.0 0	.0 0.0	0.0	0.0 0	0.0 0.0	0.8	0.0 0	.0 0.0	0.0	10 0.4	0.0	00 1	0 17	15 1	2 1.0	0.7	0.3 0.	4 02	0.1
pour-onto celery pan	0.0	0.0	0.0 0	7 1.0	0.0	0.0	07 0	0 0.0	0.0	0.0 0	0.0 0.0	0.0	0.2	0.0 0.0	0.0	0.0	0.0 0	0.0	0.0	0.0 0	.0 0.0	0.0	0.0 0	0.0 0.0	0.8	0.0 0	.0 0.0	0.0	20 04	0.0	00 0	0.0	10 0	19 0.7	0.6	0.4 0.	2 0.3	0.3
r. down boerd outling knife	0.0	0.0	0.0 0	9 1.0	0.0	0.0	0.5 0	0 2.3	0.0	14 0		1.0	1.4	0.7 2.1	2.3	0.0	0.0 1	8 0.0	1.0	0.9 0	.0 0.0	0.6	0.0 0	0.0 0.0	2.7	0.0 0	0 0.9	0.0	15 42	0.0	00 0	0.0	0.0	19 0.8	0.6	0.7 0.	7 0.6	0.5
throw into bin garbage	- 0.0	0.0	0.0 1	0.0	0.0	0.0	0.9 0	0 0.0	0.0	0.0 0	0.0	0.0	0.4	0.0 0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0.0	1.1	0.0 0	0 0.0	0.0	10 01	0.0	0.0 0.0	0.0	0.0	10 1.0	0.8	0.6 1	1 05	0.5
put-into celery fridge	0.0	0.0	0.0 Q.	0.0	0.0	0.0	10 0	0 0.0	0.0	0.0 0	0.0	0.0	0.5	0.0 0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0	0.0 0.0	1.4	0.0 0	0.0	0.0	10 0.7	0.0	0.0 0.0	0.0	0.0	10 0.0	0.9	0.7 1	3 0.6	0.6
str spetule	- 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.8	0.2 0.0	0.1	0.0	0.0 0	0 0.0	0.0	0.0 0	0.0	0.0	0.0	0.0 0.0	0.8	0.0 0	0.0	0.0	10 10	0.0	0.0 0.0	0.0	0.0	0.0	0.0	10 1	8 0.9	0.9
open container	0.0	0.3	0.0 5	9 0.0	6.9	0.0	45 0	0 13.3	0.0	6.4 0	13 1	6.0	2.9	2.0 8.1	15.6	0.0	0.0 6	6 0.3	0.0	0.8 0	0.0	0.7	0.0 0	0.0 0.0	3.4	0.0 0	0.0	0.0	14 13	0.0	0.0 0.0	0.0	0.5 0	10 0.0	0.0	9.8 7.	5 4.8	12.8
take origin	- 3.2	0.0	1.5 5.	4 0.0	0.0	0.0	48 0	6 3.8	0.0	19 0	0.0	3.4	15.4	13 3.8	6.7	0.0	0.0 8	9 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	1.8	0.0 0	0 0.0	0.0	2.0 0.0	0.0	0.0 0.	0.0	0.0	0.0	0.0	0.0 30	6 6.4	5.7
put down onion	0.8	2.2	0.8 3	5 0.0	1.0	0.0	3.9 0	0 10.3	0.0	35 0	20 2	17	55	13.0 6.6	5.8	0.7	0.0 5	1 0.0	0.0	0.0 0	18 0.0	0.4	0.0 0	0.0 0.0	0.9	3.0 0	.0 0.0	0.0	16 13	0.0	00 0	0.0	0.5 0	10 0.0	0.0	11 4	3 21.3	4.6
close container	- 0.0	19	0.0 16	8 0.0	0.0	0.0	14.2 0	0 11.		18.2 0	20 3	34.4	3.4	25 63	7.7	0.0	0.0 G	2 0.0	0.0	16 0	.0 0.0	0.0	0.0 0	0.0 0.0	4.2	00 0	.0 0.0	0.0	1.7 2.1	0.0	00 Q	0.0	0.7 0	10 0.0	0.0	2.4 0.	0 2.1	8.4
		- tab	doct .	- 548	- 124	- 140	- after		able .	- part	1 20	- pas	- auto	nte.	- 190-	ette .	- tour	ter.	-		i i	in the second	÷	i s	oute -	i i	i i	- 10	tin.	- Line	Sery -	ind.	- inter	- ače -	- 810	1	100-	ine.
	openi	n on	ciater -	take ce	conta	Takes	hose fr.	en dia	vepets	cupp	and cut	r cuption	Taken k	Stern >	um en	duna i	mark Cl	a and	take	down	duno.	10.11	Court o	an rubt	to the	round raise	6	to set	moto :	est ce	Cutt Cel	celery.	1 Out	ing the	11. Spo	n conta Take of	town of	e contra
		2			toke		Ŭ .		-dzen	ado .	over 00	chile		5 G	-	ALC: N				2	¥ 8	8	do	gefte t	8	th.		ue-1100	put dia	,	5 ct -5	th cerbo	cerci ci	inte ce	ĵ.	ado .	p.u.d	chu
									μ															a contra								rod	queo	ind ind				
																																	-					

Types of distance metrics

Distance in frames/seconds between actions

- Takes into account temporal difference
- Can differentiate between end/start (but which one to choose?)
- But dependent on length of actions

Distance as index difference in ordinal sequence

- Only considers ordering
- Might be more adapted to causality concepts
- Doesn't depend on length of actions

Testing ETM design choices

We test several design choices, including different decay functions, ETM sizes and distance metrics.

Size	Decay	Temp Metric	Present (top-1 accuracy)						
SIZC	Decay	remp. wieute	Verb	Noun	Action				
13k	linear	time	0.551	0.462	0.288				
13k	exponential	time	0.556	0.477	0.291				
2.5k	exponential	time	0.586	0.488	0.313				
2.5k	no decay	-	0.581	0.480	0.305				
2.5k	linear	index	0.601	0.493	0.319				
2.5k	exponential	index	0.603	0.503	0.324				

Datasets used

700 videos depicting cooking actions, totalling 100 hours.

3670 hours of video from 71 different participants.

EGTEA Gaze+

10k segments annotated with 19 verbs, 51 nouns and 106 unique actions.

Tasks where we test our embeddings

Experimental results - Action recognition

Results with MoViNet A0

Dataset	Model	Present					
Dataset	WIGHEI	Verb	Noun	Action			
EK100 [14]	Baseline	64.8	47.4	36.8			
	ETM(Ours)	67.9	51.2	40.2			
EGO4D	Baseline	32.3	23.5	21.1			
LTA [16]	ETM(Ours)	32.9	24.2	22.0			
EGTEA	Baseline	81.2	71.7	60.4			
Gaze+ [28]	ETM(Ours)	83.4	72.9	62.5			

Cross Model

Results on EK100 across a wide variety of models

Model	w/o ETM	w/ ETM
MoviNet A0 [24]	36.8	40.2
MoviNet A2 [24]	41.2	43.4
X3D-XS [11]	35.5	38.1
X3D-S [11]	40.5	42.2
ConvNeXt-S 224 [31]	20.1	32.4
LambdaResNet-50 [4]	26.6	27.1
EfficientNet-B0 [57]	25.3	26.3
EfficientNet-B4 [11]	29.2	29.4
AVT-b [14]	30.4	30.7

Experimental results - Action Anticipation

		Cross	Model	S						
		Results on EK								
			Baseline			ETM (Ours)	Encoder	w/o ETM	V
Dataset	Frozen Encoder?	Verb ↑	Noun ↑	Action ↑	Verb ↑	Noun ↑	Action ↑	MoViNet A0 [24]	8.0	
Inclusion of Concession	1	19.9	20.4	7.2	21.5	20.5	8.1	MoviNet A2 [24]	10.2	
EK100		20.8	21.3	8.0	22.4	22.7	9.1	X3D-X5 [11]	0.3 9.4	
ECO4D LTA	~	17.1	16.6	10.3	18.1	17.8	11.4	ConvNeXt-S 224 [31]	4.1	
EGO4D LIA		18.2	17.5	11.1	19.9	19.1	12.9	EfficientNet B0 [57]	7.2	
EGTEA Gaze+	\checkmark	42.1	37.6	28.9	43.4	38.9	31.3	EfficientNet B4 [57]	9.4	
		43.5	38.5	30.3	46.5	40.7	34.1	AVT-b [14]	13.4	

with ETM 9.1

10.8

7.4 9.9

5.0

8.0

10.1 13.5

Larger gains on smaller models!

Performance on architecture families

Baseline tests and ablations

Shuffle Rows

Row shuffling in ETM matrix: Distribution of **future actions** doesn't match the action index at a given **row**.

Row shuffling in ETM matrix: Distribution of **past actions** doesn't match the action index at a given **column**.

Full Shuffle

Full shuffling in ETM matrix: no transition probability estimation matches its original action pair.

Co-occurrence

Co-occurrence frequency between a1 and a2

Using a co-occurrence matrix: cells correspond to **co-occurrence frequencies** instead of transition probabilities

Baseline tests and ablations

Model		Present		MAE on	MAE on
Widder	Verb ↑	Noun ↑	Action ↑	Past \downarrow	Future \downarrow
Baseline	64.8	47.4	36.8	-	-
Full shuffle	64.1	47.2	36.3	4.117	4.012
Columns/rows shuffle	64.7	47.6	36.7	3.254	3.101
Co-occurrence	65.3	49.0	37.9	1.211	1.115
Only past vector	65.7	49.3	38.2	0.901	-
Only future vector	65.5	49.8	38.3	-	0.898
ETM (Ours)	67.9	51.2	40.2	0.882	0.859

Conclusions

- We introduce a new training regime that uses external temporal regularities to boost video understanding.
- Using our ETM as a training target enhances action recognition and anticipation, particularly on **low representational power models.**
- Our ETM protocol's key benefits: flexibility, simplicity, cost-effectiveness, and easy integration.

Thank you!

Leveraging Temporal Context in Low Representational Power Regimes

Camilo Fosco, SouYoung Jin, Emilie Josephs, Aude Oliva

Project page: <u>camilofosco.com/etm_website</u>

Contact: camilolu@mit.edu

