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Adversarial Augmentation against Adversarial Attacks (A>)
A full framework for PREEMPTIVE, CERTIFIED protection
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Other defense methods: purification (and randomization)
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Adversarial and certified training







Configurations: Offline (A>3/0)
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Configurations: Offline (A>3/0)

Results on CIFAR10, attack 8/255
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Configurations: Robustifier (A>/R)
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Configurations: Robustifier (A>/R)

Results on CIFAR10, attack 8/255 R, s e 5%
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A() = normalize()
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Configurations: Robustifier and Classifier (A>/RC)
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Configurations: Physical and Classifier (A>/P and A>/PC)
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Configurations: Physical and Classifier (A>/PC)
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Conclusion

Preemptive, certifiable robustification
Offline and on the fly for acquired images
Offline for physical objects

The benefit of co-training

Technical details and more results on MNIST, FashionMNIST, Tinylmage net
available in our paper

Scaling to large network architecture still problematic

Code available for research here:
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