

Neural Voting Field for Camera-Space 3D Hand Pose Estimation

Lin Huang, Chung-Ching Lin, Kevin Lin, Lin Liang, Lijuan Wang, Junsong Yuan, Zicheng Liu

Project website: https://linhuang17.github.io/NVF/ Poster: WED-AM-071

The State University of New York

Overview

<u>Task:</u>

• Absolute 3D hand pose estimation given a single RGB image

Assumption:

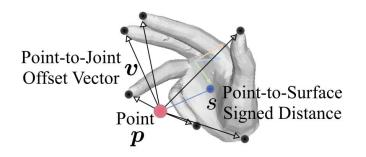
- 1. Camera intrinsic parameters are known
- 2. Optional:
 - Hand scale if provided

Existing Methods:

• First adopt holistic or pixel-level dense regression to obtain relative 3D hand pose and then follow with complex second-stage operations for 3D global root or scale recovery

Contributions:

- 1. Building on the recent progress in implicit representation learning, we propose Neural Voting Field (NVF), as the first 3D implicit representation-based unified solution to estimate camera-space 3D hand pose
- 2. NVF follows a novel unified 3D dense regression scheme to estimate camera-space 3D hand pose via dense 3D point-wise voting in camera frustum
- 3. NVF outperforms baseline methods based on holistic and 2D dense regression and achieves state-of-the-art results on absolute and relative hand pose estimation



Background: Challenges & Significance

General Task:

Monocular 3D hand pose estimation generally aims to recover 3D locations of hand joints from an RGB image

Common Challenges:

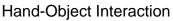
- Highly articulated structure
- Large variations in global orientations
- Severe (self-)occlusion

Challenges for RGB Input:

- 2D-to-3D depth and scale ambiguities
- Self-similarity and uniform hand texture
- Cluttered Background
- Lighting

Significance:

- Most existing works focused on root-relative 3D hand pose estimation. Having root-relative hand joint coordinates alone is insufficient for various interactive tasks.
- Being able to recover camera-space 3D hand joint coordinates in an AR view enables the user to directly use hands to manipulate virtual objects moving in 3D space.



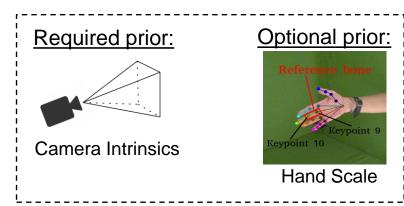
Mixed Reality [Microsoft]

Teleoperation [Internet]

Considered Task: Monocular Absolute 3D Hand Pose Estimation

<u>Input</u>

Single Hand RGB Frame



<u>Output</u>

3D Hand Pose

The 3D hand pose is defined as: hand joint locations in camera space

Related Works: Monocular Absolute 3D Hand Pose Estimation

Comparison of representative absolute 3D hand pose estimation schemes

Method	First Stage	Second Stage
Iqbal <i>et al</i> . [29]	2D-Dense	Scale Estimation
ObMan [22]	Holistic	Root Estimation
I2L-MeshNet [42]	1D-Dense	Root Depth Estimation
CMR [8]	2D-Dense+SpiralConv	Registration
Hasson <i>et al</i> . [21]	Holistic	Model Fitting
NVF (Ours)	Unified 3D-Dense	Weighted Average

Motivation

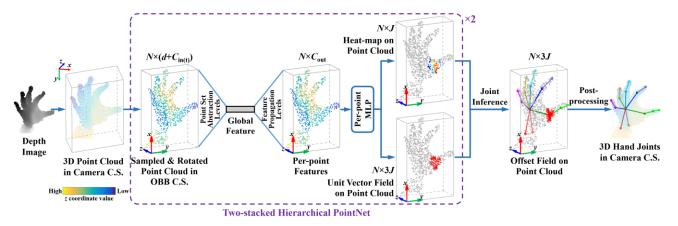
Our Goal:

A unified framework for robust camera-space 3D hand pose estimation from an RGB image

Two Key Design Elements:

1) The ability to exploit dense local evidence:

Dense regression-based methods are more effective than holistic regression-based counterparts for handling highly articulated 3D pose structure



[Point-to-Point'18] regresses dense 3D point-wise estimations directly from input 3D point cloud, showing superior performance improvements over holistic regression-based methods for 3D hand pose estimation

Motivation

Our Goal:

A unified framework for robust camera-space 3D hand pose estimation from an RGB image

Two Key Design Elements:

1) The ability to exploit dense local evidence:

Dense regression-based methods are more effective than holistic regression-based counterparts for handling highly articulated 3D pose structure

2) The ability to reason 3D hand global geometry:

Given 2D evidence and camera intrinsic parameters, reasonable understanding towards target object 3D structure/geometry is crucial to alleviate 2D-to-3D depth ambiguity

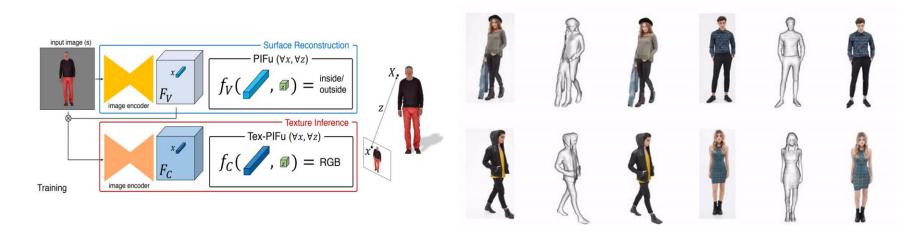
Motivation

Our Goal:

A unified framework for robust camera-space 3D hand pose estimation from an RGB image

The Question:

How to fully integrate both elements into our algorithm design in a unified manner?



[PIFu'19]-based methods reconstruct highly detailed 3D human geometry from an RGB image in a unified way, showing its ability to model high frequency local details (e.g., clothing wrinkles) while generating complete global geometry including largely occluded region (e.g., back of a person)

The Proposed Method: Dense Offset-based Pose Re-Parameterization

Pose Re-Parameterization:

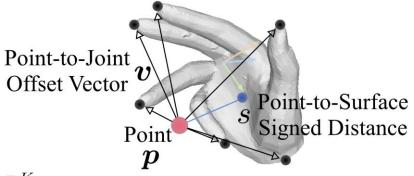
 $\psi : \mathbb{R}^3 \times \mathcal{J} \times \mathcal{M} \mapsto \mathbb{R}^{T \times 4}$ as $\psi(\boldsymbol{p}, J, M) = V$. $V = \{\boldsymbol{v}_t\}_{t=1}^T, \boldsymbol{v}_t \in \mathbb{R}^4$

4D Offset Vector:

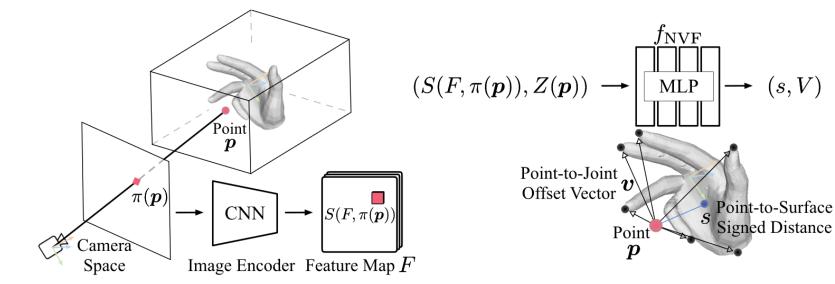
 $oldsymbol{v}_t \,=\, (w_t, oldsymbol{d}_t)$

$$w_t = \begin{cases} 1 - \frac{\|\boldsymbol{j}_t - \boldsymbol{p}\|_2}{r} & |s| < \delta \text{ and } \|\boldsymbol{j}_t - \boldsymbol{p}\|_2 \le r \text{ and } \boldsymbol{p} \in B_t^K, \\ 0 & \text{otherwise;} \end{cases}$$

$$oldsymbol{d}_t = \left\{ egin{array}{cc} rac{oldsymbol{j}_t - oldsymbol{p}}{\|oldsymbol{j}_t - oldsymbol{p}\|_2} & |s| < \delta ext{ and } \|oldsymbol{j}_t - oldsymbol{p}\|_2 \leq r ext{ and } oldsymbol{p} \in B_t^K, \ oldsymbol{0} & ext{otherwise;} \end{array}
ight.$$



The Proposed Method: Neural Voting Field



Neural Voting Field (NVF):

$$f_{\text{NVF}} : \mathbb{R}^C \times \mathbb{R} \mapsto \mathbb{R} \times \mathbb{R}^{T \times 4} \text{ as} f_{\text{NVF}} (S(F, \pi(\boldsymbol{p})), Z(\boldsymbol{p}); \boldsymbol{\theta}) = (s, V),$$

 $\begin{aligned} & \underbrace{\text{Optimization:}}_{L_s} = \frac{1}{N} \sum_{n=1}^{N} \left| \text{clamp}\left(\hat{s}_n, \delta\right) - \text{clamp}\left(s_n, \delta\right) \right|, \\ & L_V = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(|\hat{s}_n| < \delta \right) H\left(\hat{V}_n, V_n\right), \\ & \boldsymbol{\eta}^{\star}, \boldsymbol{\theta}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{\eta}, \boldsymbol{\theta}} L_s + \lambda L_V. \end{aligned}$

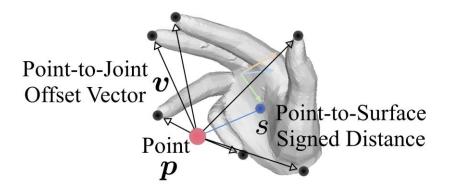
The Proposed Method: Dense 3D Point-to-Joint Voting

4D Offset Vector to Actual 3D Offset:

$$\boldsymbol{o}_t^n = \mathbb{1}\left(|s_n| < \delta\right) \left[r(1 - w_t^n)\boldsymbol{d}_t^n\right].$$

Point-to-Joint Voting:

$$oldsymbol{j}_t = \sum_{n=1}^N rac{\mathbbm{1}\left(|s_n| < \delta
ight) w_t^n(oldsymbol{o}_t^n + oldsymbol{p}_n)}{\sum_{n=1}^N \mathbbm{1}\left(|s_n| < \delta
ight) w_t^n}.$$



Experimental Setup: Baseline Methods

Sharing the same architecture of the Hourglass network and the MLP as NVF:

1) <u>Baseline-Holistic:</u>

We directly apply a global average pooling to the feature map extracted by the Hourglass network and use MLP to directly output the 3D hand pose

2) Baseline-2D-Dense:

Given the feature map extracted by the Hourglass network, it uses MLP to predict for each pixel-aligned image feature:

- Probability that the hand is present at each pixel
- A set of 4D vectors (Each 4D vector consists of a 1D voting weight and 3D hand joint coordinate)

Experimental Setup: Datasets and Evaluation Metrics

FreiHAND:

Camera-space 3D hand pose estimation

<u>HO3D:</u>

Root-relative 3D hand pose estimation

Baseline Studies

Comparison with Baselines of CS-MJE for absolute 3D hand pose on FreiHAND

Comparison with Baselines of TE and DE for absolute 3D hand pose on FreiHAND

Method	Extra	Hand	Hand	CS-MJE↓ Method	Mathad	Extra	Hand		
	Data	Crop	Scale		Data	Scale	TE↓	DE↓	
Baseline-Holisitc	-	×	×	54.5	Baseline-Holisitc	-	X	50.6	49.1
Baseline-2D-Dense	-	×	×	53.2	Baseline-2D-Dense	-	X	49.2	47.9
CS-NVF (Ours)	-	×	×	47.2	CS-NVF (Ours)	-	X	43.6	42.4
Baseline-Holisitc	-	×	✓	50.4	Baseline-Holisitc	-	\checkmark	46.9	45.5
Baseline-2D-Dense	-	×	\checkmark	49.0	Baseline-2D-Dense	-	\checkmark	45.3	43.9
CS-NVF (Ours)	-	×	\checkmark	42.4	CS-NVF (Ours)	-	\checkmark	38.9	37.8
Baseline-Holisitc	Comp*	×	×	51.3	Baseline-Holisitc	Comp*	X	48.7	47.1
Baseline-2D-Dense	Comp*	×	×	50.9	Baseline-2D-Dense	Comp*	X	47.9	46.4
CS-NVF (Ours)	Comp*	×	×	44.6	CS-NVF (Ours)	Comp*	X	41.5	40.4
Baseline-Holisitc	Comp*	×	\checkmark	44.3	Baseline-Holisitc	Comp*	\checkmark	41.7	40.1
Baseline-2D-Dense	Comp*	×	\checkmark	43.4	Baseline-2D-Dense	Comp*	\checkmark	40.5	38.8
CS-NVF (Ours)	Comp*	×	\checkmark	39.3	CS-NVF (Ours)	Comp*	\checkmark	36.5	35.5

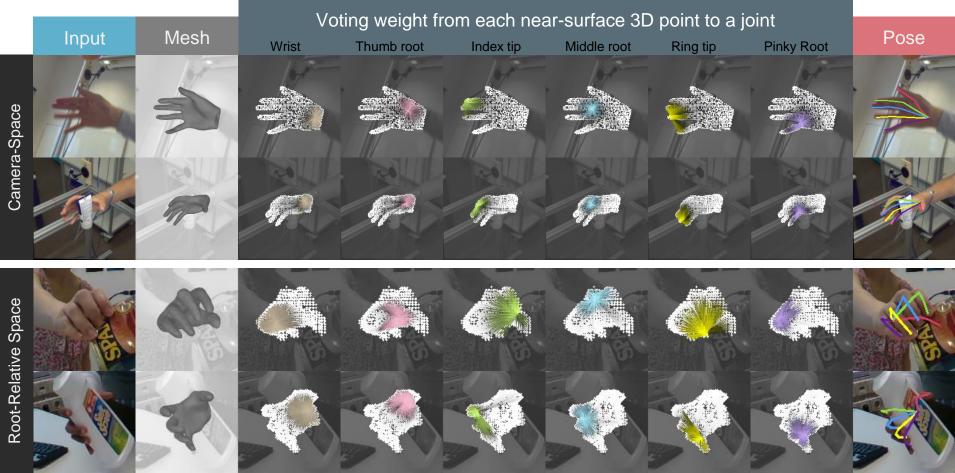
Main results

Comparison with SOTA methods for absolute 3D hand pose on FreiHAND

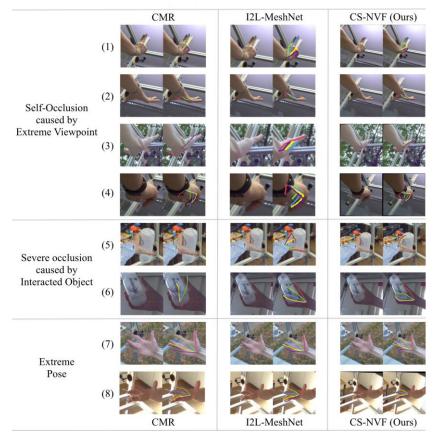
Comparison with SOTA methods for relative 3D hand pose on HO3D

Method	Extra	Hand	Hand	CS-MJE↓	Method	MJE↓	AUC↑	RS-MJE↓
	Data	Crop	Scale		Hasson et al. [20]	36.9	0.369	-
ObMan [22]	-	\checkmark	×	85.2	Pose2Mesh [11]	33.3	0.480	33.2
MANO CNN [64]	-	\checkmark	×	71.3	ObMan [22]	31.8	0.461	55.2
I2L-MeshNet [42]	-	\checkmark	×	60.3	Liu et al. [38]	31.7	0.463	30.0
CMR-SG-RN18 [8]	-	\checkmark	×	49.7	Hampali et al. [18]	30.4	0.494	-
CMR-SG-RN50 [8]	-	\checkmark	×	48.8	METRO [35]	28.9	0.504	-
Baseline-Holisitc	-	×	×	54.5	I2L-MeshNet [42]	26.0	0.529	26.8
Baseline-2D-Dense	-	×	×	53.2	Keypoint Trans. [19]	25.7	0.553	-
CS-NVF (Ours)	-	×	×	47.2	ArtiBoost [58]	25.3	0.532	-
Baseline-Holisitc	-	×	\checkmark	50.4	Zheng et al. [61]	25.1	0.541	-
Baseline-2D-Dense	-	×	\checkmark	49.0	HandOccNet [45]	24.0	0.557	24.9
CS-NVF (Ours)	-	×	\checkmark	42.4	RS-NVF (Ours)	21.8	0.610	23.2
CS-NVF (Ours)	Comp*	X	×	44.6				
CS-NVF (Ours)	Comp*	X	1	39.3				

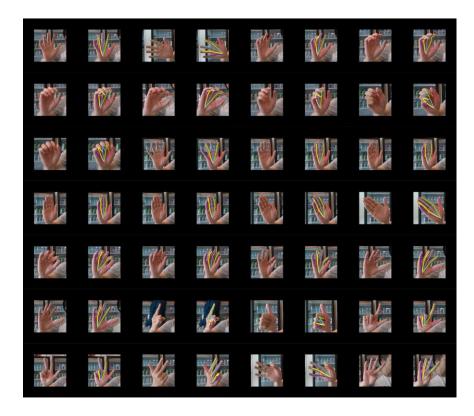
Qualitative Results



Additional Qualitative Results



Qualitative comparisons with SOTA methods on complex and failure cases



Qualitative results from another domain using NVF trained on FreiHAND only

Neural Voting Field for Camera-Space 3D Hand Pose Estimation

Lin Huang, Chung-Ching Lin, Kevin Lin, Lin Liang, Lijuan Wang, Junsong Yuan, Zicheng Liu

Project website: https://linhuang17.github.io/NVF/ Poster: WED-AM-071

The State University of New York