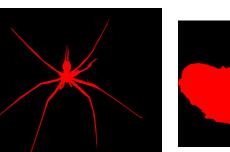


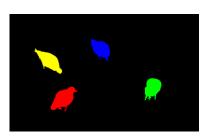
Naisong Luo^{1*}, Yuwen Pan^{1*}, Rui Sun¹, Tianzhu Zhang^{1,2,3}, Zhiwei Xiong^{1,2}, Feng Wu^{1,2}

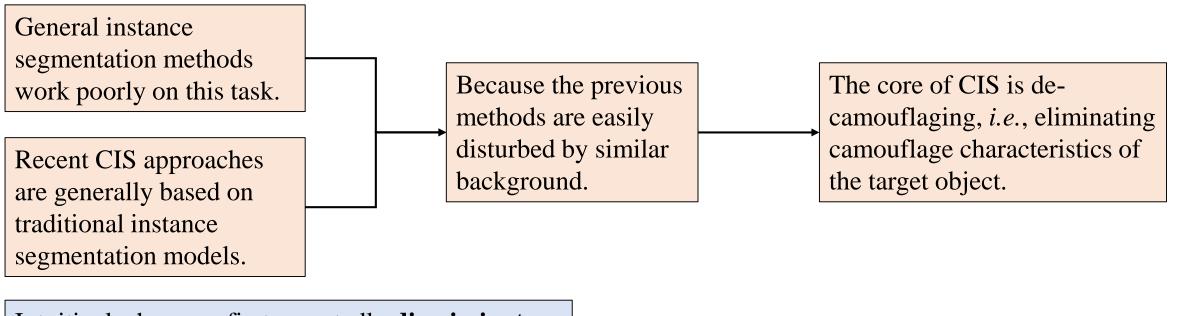
¹University of Science and Technology of China ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center ³Deep Space Exploration Lab

Paper Tag: THU-AM-137

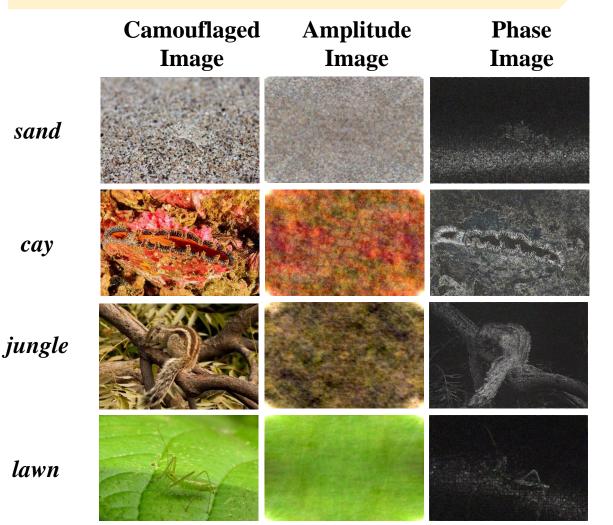


Camouflaged Instance Segmentation (CIS)

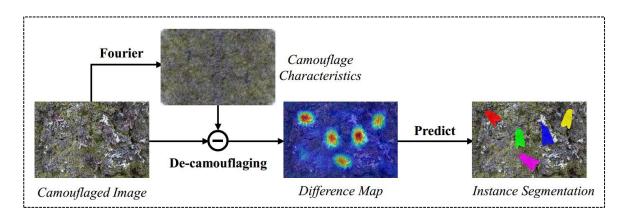

Camouflaged Instances



Core of CIS: De-camouflage

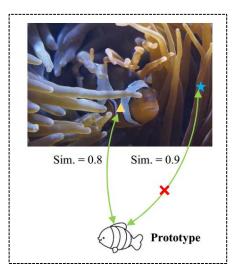

Intuitively, humans first repeatedly **discriminate the real target characteristics** from the camouflage characteristics at the pixel level, and then aggregate the pixel information to **discern the whole target instance** from the background.

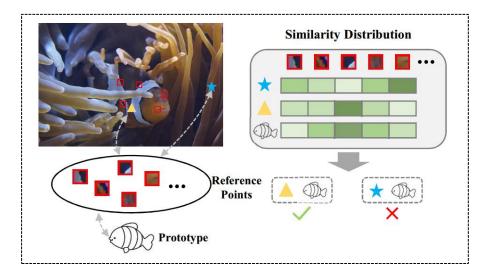
Explore decamouflaging strategy from the **pixel level** to the **instance level** in a progressive manner.



Pixel-level De-camouflage

- The Fourier spectrum amplitude contains lowlevel statistics (e.g., color and texture of the environment) that accords with the camouflage characteristics.
- Although phase images contain semantic information, they also have abundant pixel-level noise (in the background area), which is not conducive to de-camouflaging.

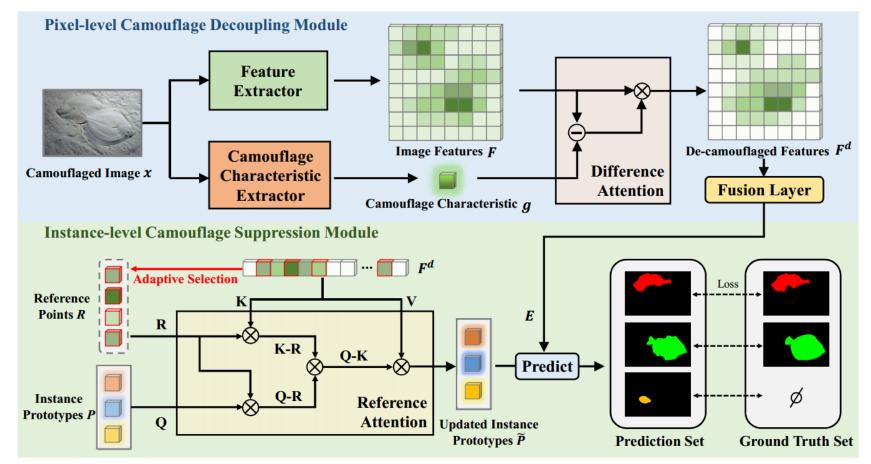




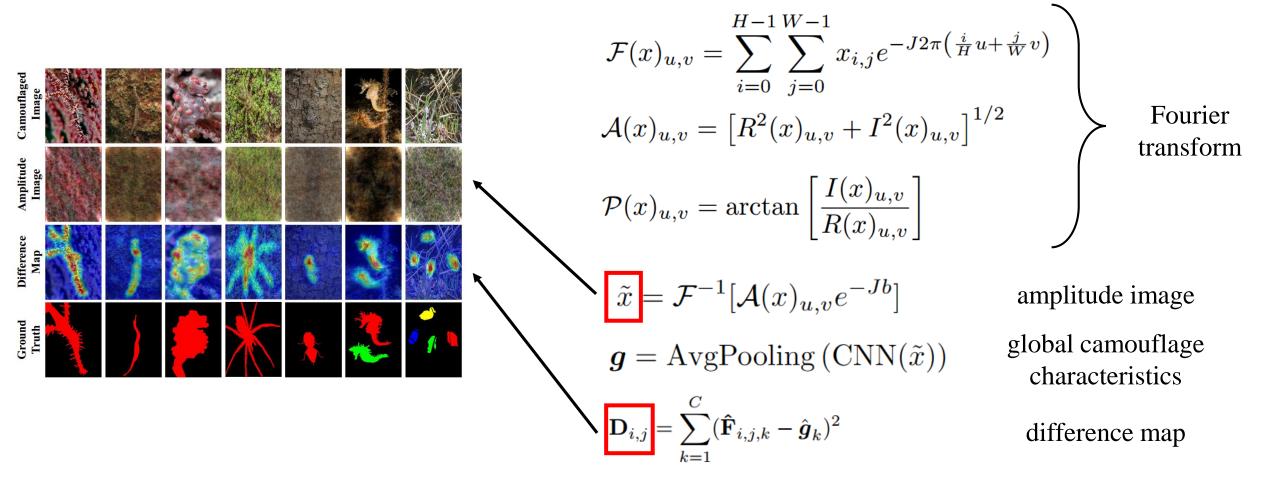
Instance-level De-camouflage

We introduce a set of instance prototypes to capture each camouflaged instance through long-range contextaware interactions to achieve final instance segmentation.

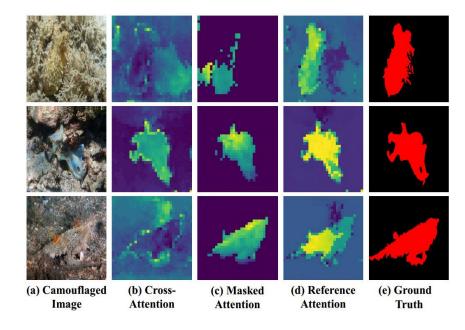
Prototypes will frequently absorb deceptive background information that has high similarity with the objects during the interaction, thus failing to discover desired targets accurately.


We select de-camouflaged pixels with high contribution to prototypes as reference points. Highly similar pixels and prototypes must have consistent similarity distributions on the reference points.

Overall Framework


De-camouflage Network (DCNet)

Pixel-level Camouflage Decoupling Moudule (PCD)



Instance-level Camouflage Suppression Moudule (ICS)

$$\boldsymbol{q}_i = \boldsymbol{p}_i \mathbf{W}^q, \boldsymbol{k}_j = \boldsymbol{f}_j \mathbf{W}^k, \boldsymbol{v}_j = \boldsymbol{f}_j \mathbf{W}^v$$

$s_{i,j} = \frac{d(\boldsymbol{q}_i, \boldsymbol{k}_j)}{\sqrt{L}}$ original prototype-pixel similarity
$u_j = \sum_{i=1}^{N} s_{i,j}, j \in 1, 2,, hw$ contribution to select references
$s_i^q = \phi_1(\boldsymbol{q}_i \mathbf{R}^\top), s_j^k = \phi_2(\boldsymbol{k}_j \mathbf{R}^\top)$ prototype-reference and pixel-reference similarity
$s_{i,j}^{qk} = d(\boldsymbol{q}_i, \boldsymbol{k}_j; \mathbf{R}) = s_i^q (s_j^k)^\top$ updated prototype-pixel similarity
$\tilde{\boldsymbol{p}}_i = \sum_{j=1}^{hw} a_{i,j} \boldsymbol{v}_j, a_{i,j} = \frac{\exp(s_{i,j}^{qk})}{\sum_{j=1}^{hw} \exp(s_{i,j}^{qk})} \qquad \text{instance prototypes}$

Reference attention Map

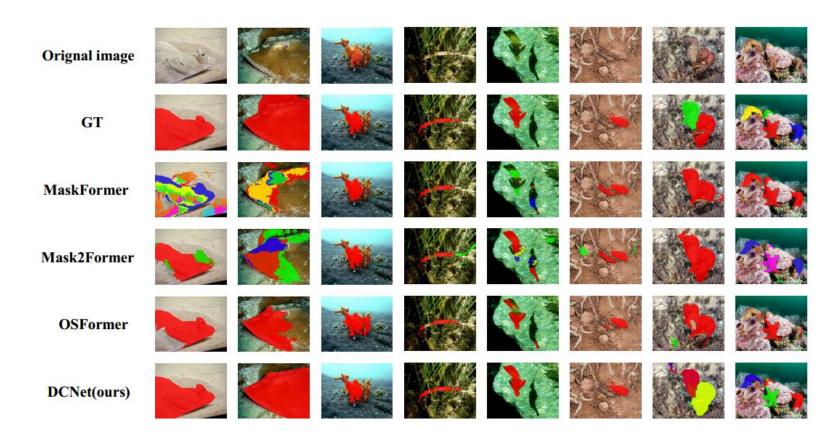
Experimental Results

Performance comparison on the COD10K and NC4K dataset

Methods	C	OD10K-T	est		NC4K-Tes	st	Doroma(M)	GFLOPs
Methous	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅	Params(M)	GFLOPS
Mask R-CNN [14]	25.0	55.5	20.4	27.7	58.6	22.7	43.9	186.3
MS R-CNN [17]	30.1	57.2	28.7	31.0	58.7	29.4	60.0	198.5
Cascade R-CNN [2]	25.3	56.1	21.3	29.5	60.8	24.8	71.7	334.1
HTC [4]	28.1	56.3	25.1	29.8	59.0	26.6	76.9	331.7
BlendMask [3]	28.2	56.4	25.2	27.7	56.7	24.2	35.8	233.8
Mask Transfiner [20]	28.7	56.3	26.4	29.4	56.7	27.2	44.3	185.1
YOLACT [1]	24.3	53.3	19.7	32.1	65.3	27.9	-	-
CondInst [38]	30.6	63.6	26.1	33.4	67.4	29.4	34.1	200.1
QueryInst [12]	28.5	60.1	23.1	33.0	66.7	29.4	-	-
SOTR [13]	27.9	58.7	24.1	29.3	61.0	25.6	63.1	476.7
SOLOv2 [41]	32.5	63.2	29.9	34.4	65.9	31.9	46.2	318.7
MaskFormer [6]	38.2	65.1	37.9	44.6	71.9	45.8	45.0	174.2
Mask2Former [5]	39.4	67.7	38.5	45.8	73.6	47.5	43.9	241.0
OSFormer [33]	41.0	71.1	40.8	42.5	72.5	42.3	46.6	324.7
DCNet (ours)	45.3	70.7	47.5	52.8	77.1	56.5	53.4	207.0

Comparison of different components in PCD

COD10K	NC4K
45.3	52.8
$43.1_{(-2.2)}$	48.1(-4.7)
$44.1_{(-1.2)}$	51.3(-1.5)
40.2(-5.1)	46.4(-6.4)
	45.3 43.1(-2.2) 44.1(-1.2)


Comparison of different attention mechanisms in ICS

Attention Mechanism	COD10K	NC4K
cross-attention [39]	42.4	49.5
masked attention [5]	44.7	51.7
reference attention (ours)	45.3	52.8

Qualitative Results

Code will be released at: <u>https://github.com/USTCL/DCNet</u>