# PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces 

Yiqun Wang, Ivan Skorokhodov, Peter Wonka

## Background



Neural Surface Reconstruction from Multi-View Images

## PET-NeuS



## Solution:

- Integrate tri-plane data structure into neural implicit surface reconstruction framework
- Modulate tri-plane features using positional encoding (PE)
- Utilize multi-scale self-attention convolution to produce tri-plane features

Integrate tri-planes into neural implicit surfaces

Tri-planes:

$$
T=\left(T_{x y}, T_{y z}, T_{x z}\right) \quad T_{*} \in \mathbb{R}^{R \times R \times n_{f}}
$$

Tri-plane features at a coordinate:


$$
T(x, y, z)=\boldsymbol{w} \in \mathbb{R}^{3 n_{f}} \quad \boldsymbol{w}=\left(\boldsymbol{w}_{x y}, \boldsymbol{w}_{y z}, \boldsymbol{w}_{x z}\right)
$$

Integrate tri-planes into neural implicit surfaces


Signed Distance Function (SDF):

$$
(x, y, z) \in \mathbb{R}^{3} \quad \mapsto \quad \mathrm{~S}(x, y, z)=d_{s} \in \mathbb{R}
$$

Estimate SDF using Tri-planes + MLP:

$$
\left(d_{s}, \boldsymbol{u}\right)=\operatorname{MLP}_{d}\left(\boldsymbol{w}_{x y}, \boldsymbol{w}_{y z}, \boldsymbol{w}_{x z}\right)
$$

Density for Volume Rendering:

$$
\sigma(x, y, z)=s\left(\Psi_{s}(\mathrm{~S}(x, y, z))-1\right) \nabla \mathrm{S}(x, y, z) \cdot \boldsymbol{v}_{d}
$$

## Issue



Reference Image


Pure MLP (NeuS)



Tri-planes + MLP

Noise Interference

## Modulate tri-planes features using Positional Encoding

3D Fourier series decomposition:

$$
f(x, y, z)=\sum_{k=-K}^{K} \sum_{n=-N}^{N} \sum_{m=-M}^{M} a_{m n k} \Theta_{m}^{x} \Theta_{n}^{y} \Theta_{k}^{z} \quad \Theta_{t}^{x}=\left\{\begin{array}{cc}
\cos (t x) & t>0 \\
1 & t=0 \\
\sin (t x) & t<0
\end{array}\right.
$$

- Sine and cosine waves from different dimensions $x, y, z$ are entangled with each other through multiplications.


## Modulate tri-planes features using Positional Encoding



- We derive $f(x, y, z)$ as a combination of sine and cosine functions and approximate implicit function with an MLP with sine/cosine inputs
- This approximation is directly applicable to our SDF function by utilizing an MLP that takes tri-plane features modulated by positional encoding as inputs


## Utilize multi-scale self-attention convolution



- Perform convolution with different window sizes in the spatial domain


## Utilize multi-scale self-attention convolution



$$
T=\operatorname{concat}\left[T^{i}\right]_{i=0}^{3} \cdot \quad T^{i}=\left\{T_{x y}^{i}, T_{y z}^{i}, T_{x z}^{i}\right\}
$$

- We take the output tri-plane features produced by the $i^{\text {th }}$ self-attention convolution (SAC), and concatenate them all together with the original tri-plane features to form the final tri-plane representation for different frequency bands.


## Results



## Results



## Results



## Thanks for listening



Project:

https://github.com/yiqun-wang/PET-NeuS

