

Xin Kong Shikun Liu Marwan Taher Andrew Davison

Overview

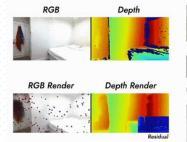
vMAP: Vectorised Object Mapping for Neural Field SLAM

CVPR 2023

Neural Field SLAM

Not decomposableUnknown correspondences

iMAP [1]



Keyframes

NICE-SLAM

NICE-SLAM [2]

Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

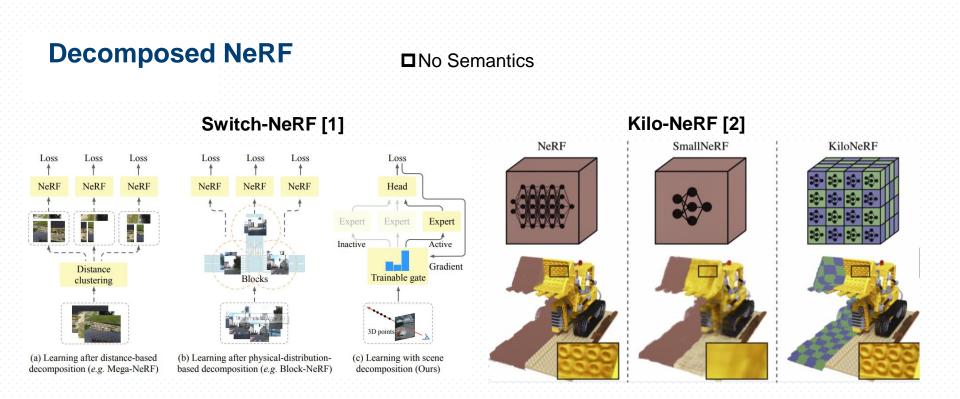
✓ First real-time neural field SLAM
✓ Compact single MLP for entire 3D scene

✓ Hierarchical feature grids + MLP decoder
 ✓ Able to reconstruct large scenes

✓ Continuous surface with plausible hole-filling

[1] iMAP: Implicit mapping and positioning in real-time, ICCV'2021 [2] Nice-slam: Neural implicit scalable encoding for slam, CVPR'2022

Pixels and keyframes are actively sampled according to the render loss.



✓ 3D space-based decomposition

✓ Split 3D scene into thousand grids✓ Many tiny MLPs speed up NeRF training

✓ Each part can be independently represented

[1] Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields. ICLR'2023 [2] Kilonerf: Speeding Up Neural Radiance Fields with Thousands of Tiny MLPs, ICCV'2021

Semantic NeRF

Not real-timeNot incremental

Feature Distillation NeRF [1]

Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering

Yinda Zhang²

Hujun Bao¹

Object NeRF [2]

Bangbang Yang¹ Han Zhou¹ Yinghao Xu³ Yijin Li¹ Guofeng Zhang¹ Zhaopeng Cui^{1*}

¹State Key Lab of CAD&CG, Zhejiang University ²Google ³The Chinese University of Hong Kong

✓ Semantic feature field

✓ Object-level Code NeRF

✓ Semantic decomposition NeRF

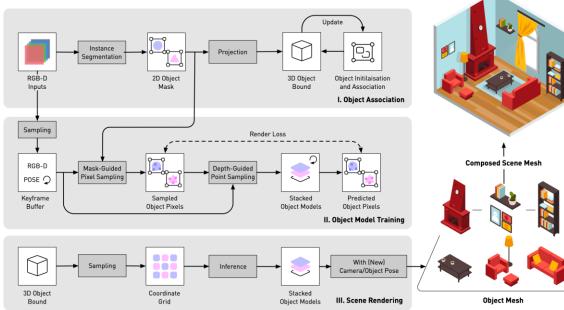
[1] Decomposing NeRF for Editing via Feature Field Distillation, NeurIPS'2022

[2] Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering, ICCV'2021

System Overview

- ✓ Object-level representation: no 3D prior, only RGB-D video
- Composable map: Independently editable, trackable
- Implicit 3D representation: higher quality, lower memory, watertight
- Efficient realtime dense mapping: manage objects parallelly, easily stop and resume

Goal: A real-time object-level dense neural mapping system



Method

Depth Guided Training
 Sampling points along ray based on depth measurement
 Training depth loss along with RGB
 Adopt surface volume rendering to improve geometry quality

✓ Efficient Object Mapping

Object association by semantic-spatial consistency **Occlusion aware** reconstruction **Vectorised training** multiple models in one go

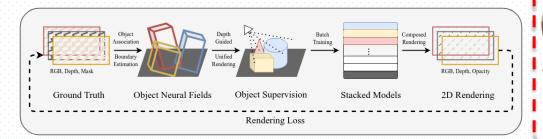


Figure A. Visualisation of depth guided sampling.

Plausible object completion without priors

Method

✓ Vectorised Training Demo Code Python/PyTorch level implementation[1], no customised CUDA

1. Init batch of models with exact same structure.

fmodel, params, buffers = combine_state_for_ensemble(models)
[p.requires_grad_() for p in params]
optimiser.add_param_group({"params": params})

3. Backprop:

batch_loss = loss(batch_pred, batch_gt)
batch_loss.backward()
optimiser.step()
optimiser.zero_grad(set_to_none=True)

2. Get batch of prediction: batch_input is a stack of batch inputs in the first dim.

batch_pred = vmap(fmodel)(params, buffers, batch_input)

4. Update original models network params.

with torch.no_grad():
 for idx, model in enumerate(models):
 for i, param in enumerate(model.parameters()):
 param.set_(params[i][idx])

Vectorised v.s. Sequential

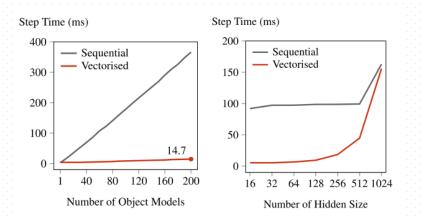
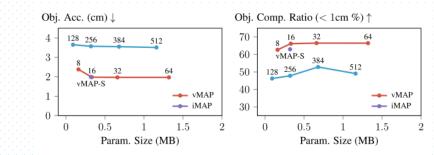


Figure 8. Vectorised operation allows extremely fast training speed compared to standard sequential operations using for loops.



Quality v.s. Model Size

Figure 9. Object-level Reconstruction v.s. Model Param. (denoted by network hidden size). vMAP is more compact than iMAP, with the performance starting to saturate from hidden size 16.

✓ Object-level representation is highly compressible

Results	
---------	--

	Object Masks	Depth Quality	Pose Estimation
Replica	Perfect GT	Perfect GT	Perfect GT
ScanNet	Noisy	Noisy	Perfect GT
TUM RGB-D	Detic	Noisy	ORB-SLAM3
Our Recording	Detic	Noisy	ORB-SLAM3

Table 1. An overview of datasets we evaluated.

TUM RGB-D Evaluation

Camera Tracking

ATE RMSE [cm]↓	iMAP	NICE-SLAM	vMAP	ORB-SLAM2
fr1/desk	4.9	2.7	2.6	1.6
fr2/xyz	2.0	1.8	1.6	0.4
fr3/office	5.8	3.0	3.0	1.0

Table 3. Camera tracking results on TUM RGB-D.

- Camera tracking & Mapping reconstruction is highly interdependent
 Adopt ORB-SI AM for cleaner implementation, faster
 - Adopt ORB-SLAM for cleaner implementation, faster training speed, higher tracking quality

Real-time Mapping

Figure 6. Visualisation of scene reconstruction from TSDF-Fusion (left) and vMAP (right) in a selected TUM RGB-D sequence, trained in real time for 99 seconds.

2D Novel View Rendering

Protocol: For each scene **randomly generate a new trajectory**, get GT 2D novel view, compared with rendered 2D results

		room-0	room-1	room-2	office-0	office-1	office-2	office-3	office-4	Avg.
	Depth L1. [cm]↓	1.99	1.57	2.72	12.50	7.37	3.03	2.39	2.18	4.22
NICE-SLAM	PSNR. ↑	24.11	23.43	23.48	23.91	22.69	23.78	23.78	26.00	23.90
NICE-SLAW	SSIM ↑	0.73	0.74	0.82	0.83	0.82	0.83	0.84	0.85	0.81
	LPIPS ↓	0.11	0.09	0.09	0.15	0.28	0.11	0.10	0.09	0.13
	Depth L1. [cm]↓	1.87	1.63	2.94	13.43	7.63	2.83	2.62	1.97	4.36
NICE-SLAM*	PSNR. ↑	24.03	23.61	23.54	23.59	23.19	22.22	23.32	26.20	23.71
NICE-SLAM	SSIM ↑	0.73	0.75	0.82	0.83	0.84	0.85	0.84	0.86	0.82
	LPIPS↓	0.11	0.09	0.09	0.16	0.26	0.10	0.10	0.09	0.13
	Depth L1. [cm]↓	1.23	2.16	2.53	13.29	5.14	2.31	1.77	1.44	3.73
iMAP*	PSNR. ↑	25.83	25.51	25.22	24.17	23.94	24.02	25.45	29.13	25.41
INIAL	SSIM ↑	0.77	0.79	0.86	0.83	0.87	0.88	0.89	0.90	0.85
	LPIPS↓	0.09	0.07	0.07	0.17	0.22	0.08	0.07	0.07	0.11
	Depth L1. [cm]↓	1.68	1.57	2.37	7.73	6.60	2.50	2.30	1.85	3.33
vMAP	PSNR. ↑	25.23	25.27	24.31	23.78	23.59	23.10	23.83	27.91	24.63
	SSIM ↑	0.77	0.78	0.85	0.84	0.88	0.88	0.88	0.89	0.85
	LPIPS \downarrow	0.09	0.07	0.08	0.16	0.23	0.07	0.08	0.07	0.11

Table 3. 2D novel view synthesis rendering results on the Replica dataset.

✓ Much clearer rendering, especially for foreground objects

3D Scene-level & Object-level Geometry

	TSDF-Fusion*	iMAP	iMAP*	NICE-SLAM	NICE-SLAM*	vMAP
Scene Acc. [cm]↓ Scene Comp. [cm]↓ Scene Comp. Ratio [<5cm %]↑	1.28 5.61 82.67	4.43 5.56 79.06	2.15 2.88 90.85	2.94 4.02 86.73	3.04 3.84 86.52	3.20 2.39 92.99
Object Acc. [cm] ↓ Object Comp. [cm] ↓ Object Comp. Ratio [<5cm %] ↑ Object Comp. Ratio [<1cm %] ↑	0.45 3.69 82.98 61.70	- - -	3.57 2.38 90.19 47.79	- - -	3.91 3.27 83.97 37.79	2.23 1.44 94.55 69.23

Table 2. Averaged reconstruction results for 8 indoor Replica scenes. * represents the baselines we re-trained with ground-truth pose.

Scene-level metrics are dominated by the background meshes (Small objects have limited influence)

Object-level metrics are averaged across objects, each object contribute equally

Objects are more important than background in Robotics

3D Object-level Geometry on ScanNet

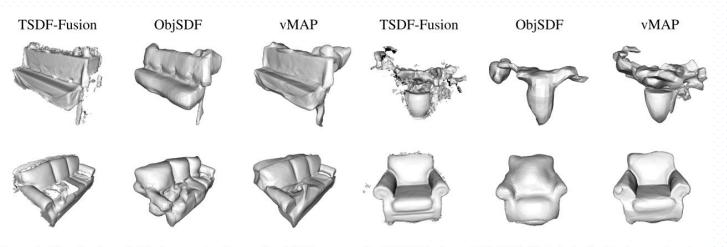


Figure 4. Visualisation of object reconstructions with vMAP compared to TSDF-Fusion and ObjSDF. Note that all object reconstructions from ObjSDF require much longer off-line training. All object meshes from ObjSDF are provided by the original authors.

[1] Object-Compositional Neural Implicit Surfaces, ECCV'2022

	Object Masks	Depth Quality	Pose Estimation
Replica	Perfect GT	Perfect GT	Perfect GT
ScanNet	Noisy	Noisy	Perfect GT
TUM RGB-D	Detic	Noisy	ORB-SLAM3
Our Recording	Detic	Noisy	ORB-SLAM3

https://kxhit.github.io/vMAP

Table 1. An overview of datasets we evaluated.

ScanNet

vMAP: Vectorised Object Mapping for Neural Field SLAM

CVPR 2023

vMAP: Vectorised Object Mapping for Neural Field SLAM

Our Recording with Kinect

CVPR 2023