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Overview

Key discovery: sparse and symbolic interactive concepts between input variables emerge 
in various DNNs, when the DNN is sufficiently trained.
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Overview

Faithfulness: Such concepts can exactly disentangle/explain the DNN output on any masked sample.

Conciseness: A sparse graph with a few of concepts can approximate the DNN’s output.

A theoretical definition for “concepts”: the concept is precisely defined with a clear 
“boundary” that specifies the exact input variables involved in each concept.

𝑣(𝑥) = 𝑣(∅) 𝐼(𝑆1) 𝐼(𝑆2) 𝐼(𝑆3)+ + + + ⋯

Network output Constant bias Concept 1 Concept 2 Concept 3
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Background: symbolic explanations for DNNs 

• Extracting concepts in DNNs.

[Kim et al., 2018] Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). ICML 2018.
[Zhang et al., 2019] Interpreting CNNs vis decision trees. CVPR 2019.
[Das et al., 2020] Interpreting deep neural networks through prototype factorization. ICDMW 2020.

• Distilling the DNN into symbolic 
models (e.g., decision tree).

• Decomposing prototype features 
from the data.

Challenge: theoretically and objectively formulate “concepts” encoded by a DNN. 

[Kim et al., 2018] [Zhang et al., 2019]
[Das et al., 2020]
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Interactive concepts

𝑣(𝑥) = 𝑣(∅) 𝐼(𝑆1) 𝐼(𝑆2) 𝐼(𝑆3)+ + + + ⋯

Network output Constant bias Torso concept Tail concept Chest concept

We define the interactive concept to decompose the DNN’s output into effects of concepts.

• E.g., in a vision task,
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Interactive concepts

Mathematically, given 

• a DNN 𝑣: ℝ𝑛 → ℝ

• an input sample 𝒙 ∈ ℝ𝒏 with 𝑛 input variables indexed by 𝑁 = 1, 2,… , 𝑛

• an interactive concept 𝑺 ⊆ 𝑵 is a subset of input variables in 𝑁, which has an effect 𝑰(𝑺) to DNN

The DNN’s inference score 𝑣(𝒙) is decomposed into the sum of effects of all potential interactive concepts.

𝑣 𝒙 = 𝑣 ∅ + 

𝑆⊆𝑁,𝑆≠∅

𝐼(𝑆)

Model output
The output score of 

sample 𝒙

Constant bias
The output score when all input 

variable are masked.

Interaction effects 
between variables in all 

potential subsets 𝑆

where 𝐼 𝑆 ≜ σ𝑇⊆𝑆 −1 𝑆 − 𝑇 ⋅ 𝑣 𝒙𝑇 .[Harsanyi, 1963]

[Harsanyi, 1963] A simplified bargaining model for the n-person cooperative game. International Economic Review, 4(2):194–220, 1963. 
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Understanding the interactive concept

𝑣(𝑁) = 𝑣(∅) 𝐼(𝑆1) 𝐼(𝑆2) 𝐼(𝑆3)+ + + + ⋯

Network output
(bird)

Constant bias Torso of 
the bird

Tail of
the bird

Chest of
the bird

0

The interaction in each set 𝑆 formulates the “AND” relationship between input variables in 𝑆.
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Understanding the interactive concept

The interaction in each set 𝑆 formulates the “AND” relationship between input variables in 𝑆.

I think he is a green hand.

I think he is a _____ hand.

I think __ __ a green hand.

green hand I think

I think he he is

is green a green hand

activated AND interactions inactivated AND interactionsinput sentence

/

green hand I think

I think he he is

is green a green hand

green hand I think

I think he he is

is green a green hand

green hand

is green a green hand

I think he he is

is green
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Faithfulness of the interactive concepts

I think he is a green hand.

I think he is a _____ hand.

𝑆1 ={green hand} 𝑆2 ={I think}

𝑆3 ={I think he} 𝑆4 ={he is}

𝑆5 ={is green} 𝑆6 ={a green hand}

activated AND interactions outputinput sentence

Interactive concepts can exactly explain/fit the DNN output on any masked sample.

𝑣 𝑁
= 𝐼 𝑆1 + 𝐼 𝑆2 + 𝐼 𝑆3 + 𝐼 𝑆4
+ 𝐼 𝑆5 + 𝐼(𝑆6)

𝑆1 ={green hand} 𝑆2 ={I think}

𝑆3 ={I think he} 𝑆4 ={he is}

𝑆5 ={is green} 𝑆6 ={a green hand}

𝑣 𝑆 = 𝐼 𝑆2 + 𝐼 𝑆3 + 𝐼 𝑆4
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Faithfulness of the interactive concept

1. Efficiency property. The output of a model can be decomposed into interactions of different subsets of variables, 𝑣 𝑁 = 𝑣 ∅ +
σ𝑆⊆𝑁,𝑆≠∅ 𝐼(𝑆).

2. Linearity property. If we merge outputs of two models, 𝑢 𝑆 = 𝑤 𝑆 + 𝑣(𝑆), then ∀ 𝑆 ⊆ 𝑁, the interaction 𝐼𝑢(𝑆) w.r.t. the new 
network 𝑢 can be decomposed into 𝐼𝑢 𝑆 = 𝐼𝑤 𝑆 + 𝐼𝑣(𝑆)

3. Nullity property: The dummy variable 𝑖 ∈ 𝑁 satisfies ∀𝑆 ⊆ 𝑁\ 𝑖 , 𝑣 𝑆 ∪ 𝑖 = 𝑣 𝑆 + 𝑣( 𝑖 ). It means that the variable 𝑖 has no 
interactions with others, i.e. ∀𝑆 ⊆ 𝑁\ 𝑖 , 𝐼 𝑆 ∪ 𝑖 = 0.

4. Symmetry property. If input variables 𝑖, 𝑗 ∈ 𝑁 have same cooperation with other variables ∀𝑆 ⊆ 𝑁\ 𝑖, 𝑗 , 𝑣 𝑆 ∪ 𝑖 = 𝑣(𝑆 ∪ {𝑗}), 
then they have same interactions with other variables, ∀𝑆 ⊆ 𝑁\ 𝑖, 𝑗 , 𝐼 𝑆 ∪ 𝑖 = 𝐼(𝑆 ∪ {𝑗}).

5. Anonymity property. For any permutations 𝜋 on 𝑁, we have ∀𝑆 ⊆ 𝑁, 𝐼𝑣 𝑆 = 𝐼𝜋𝑣 𝜋𝑆 , where 𝜋𝑆 = {𝜋(𝑖)|𝑖 ∈ 𝑆}, and 𝜋𝑣 is 
defined by 𝜋𝑣 𝜋𝑆 = 𝑣(𝑆).

6. Recursive property. The interaction utility of 𝑆 ∪ {𝑖} is the difference of the interaction utility of 𝑆 with and without the presence 
of 𝑖, i.e. 𝐼 𝑆 ∪ 𝑖 = 𝐼 𝑆 𝑖 is always present − 𝐼(𝑆).

7. Interaction distribution property. This axiom characterizes how interactions are distributed for “interaction functions”. An 
interaction function 𝑣𝑇 parametrized by 𝑇 satisfies ∀𝑆 ⊆ 𝑁, if 𝑇 ⊆ 𝑆, 𝑣𝑇 𝑆 = 𝑐; otherwise, 𝑣𝑇 𝑆 = 0. Then, we have 𝐼 𝑇 = 𝑐, 
and ∀𝑆 ≠ 𝑇, 𝐼 𝑆 = 0.
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Faithfulness of the interactive concept

1. Connection to the Shapley value [Shapley, 1953]. Let 𝜙(𝑖) denote the Shapley value of an input variable 𝑖. Then, the Shapley value 

can be represented as the weight sum of interaction utilities, i.e. 𝜙 𝑖 = σ𝑆⊆𝑁\{𝑖}
1

𝑆 +1
⋅ 𝐼 𝑆 ∪ 𝑖 .

2. Connection to the marginal benefit [Grabisch et al., 1999]. Let Δ𝑣𝑇(𝑆) denote the marginal benefit of variables in 𝑇 given the 
environment 𝑆. Then it can be decomposed into the sum of interaction utilities inside 𝑇 and sub-environments 𝑆′ ⊆ 𝑆, i.e. Δ𝑣𝑇 𝑆 =
σ𝑆′⊆𝑆 𝐼 𝑇 ∪ 𝑆′ .

3. Connection to the Shapley interaction index [Grabisch et al., 1999]. Let 𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝑇) denote the Shapley interaction index of a subset 
of input variables 𝑇 ⊆ 𝑁. The Shapley interaction index can be represented as the weighted sum of interaction utilities, i.e. 

𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑇 = σ𝑆⊆𝑁\T
1

𝑆 +1
⋅ 𝐼(𝑆 ∪ 𝑇).

4. Connection to the Shapley Taylor interaction index [Sundararajan et al., 2020]. Let 𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦−𝑇𝑎𝑦𝑙𝑜𝑟(𝑇) denote the Shapley Taylor 
interaction index of order 𝑘. The Shapley Taylor can be represented as the weighted sum of interaction utilities if 𝑇 = 𝑘, i.e. 

𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦−𝑇𝑎𝑦𝑙𝑜𝑟 𝑇 = σ𝑆⊆𝑁\T
𝑆 +𝑘
𝑘

−1
⋅ 𝐼(𝑆 ∪ 𝑇). Besides, 𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦−𝑇𝑎𝑦𝑙𝑜𝑟 𝑇 = 𝐼(𝑇) if 𝑇 < 𝑘, and 𝐼𝑆ℎ𝑎𝑝𝑙𝑒𝑦−𝑇𝑎𝑦𝑙𝑜𝑟 𝑇 = 0 if 

𝑇 > 𝑘.

[Shapley, 1953] A value for n-person games. Contributions to the Theory of Games, 2(28):307-317, 1953.
[Grabisch et al., 1999] An axiomatic approach to the concept of interaction among players in cooperative games. International 
Journal of game theory, 28(4):547–565, 1999.
[Sundararajan et al., 2020] The shapley taylor interaction index. In ICML 2020.
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Discovering and boosting the conciseness of the explanation

The DNN output can be decomposed into effects of all potential interactive concepts.

• Salient concepts: have significant effects 𝐼 𝑆 on the DNN output;

• Noisy patterns: have negligible effects 𝐼 𝑆 ≈ 0 on the DNN output.

Technique 1: Only using a few salient concepts
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Discovering and boosting the conciseness of the explanation

We learn the baseline values that minimize 

the number of salient concepts while not 

destroying the faithfulness.

The effects 𝐼(𝑆)   of interactive concepts are computed based on baseline values, which are used to mask input 

variables to compute 𝑣(𝑆).

Technique 2: Learning the optimal baseline value
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Using the interactive concepts to construct an And-Or graph

In an And-Or graph：

• AND node: a concept that represents the AND relationship between its child nodes

• OR node: the sum of interaction effects of all concepts
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Using the interactive concepts to construct an And-Or graph
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Using the interactive concepts to construct an And-Or graph
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Explaining adversarial training based on interactive concepts

The interactive concepts provide a new perspective to understand the effects of different deep learning 
techniques, e.g. adversarial training.

• Adversarial training could boost the sparsity of interactive concepts.

• Adversarial training made different DNNs encode common interactive concepts for inference.
Jaccard similarity between two models. Two adversarially trained 
models were more similar than two normally trained ones.
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Conclusion

In this study, 

• We define the interactive concept encoded in DNNs, and we prove such 
concepts can faithfully explain the DNN output.

• We discover and further boost the conciseness of interactive concepts.

• We build an And-Or Graph using a small number of interactive concepts to 
explain DNNs, which provides new insights for understanding the DNN.

Thank you!
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