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Test-Time Adaptation (TTA)
• Adapt the pre-trained source model to the distributionally shifted test domain
• Access to the source training dataset is restricted
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TTA: shortcomings of current methods
• Poor model calibration
• Special model architectures and source training strategies
• Dataset and task-specific methods
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TeSLA: motivation
• Simulate hard-to-classify images using adversarially augmented test images
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TeSLA: summary of results
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TeSLA: summary of results
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• Agnostic to model architectures and source training strategies
• Better class-wise feature separability



TeSLA: overview
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Test-time objective
• Flipped cross entropy f-CE as a proxy to teacher-guided mutual information 

maximization
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Test-time objective
• Knowledge distillation from the teacher to the student using adversarial 

augmentation 
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Test-time objective
• Overall test-time objective:
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PLR (Pseudo Label Refinement)
• Average teacher’s predictions on weakly augmented views stored in an online 

balanced queue Q.

    where,            denotes weak augmentations,        is the encoder, and        is the classifier

• Refine pseudo-labels by averaging the soft-pseudo labels of k-nearest neighbors 
from Q.
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Automatic adversarial augmentations
• Policy Search Space

• Policy Evaluation

• Policy Optimization
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Automatic adversarial augmentations
Policy Search Space ℙ

Sub-policy (𝝆): A combination of N=2 image operations and characterized by their 
magnitudes 𝑚!.

All possible sub-policies with their corresponding magnitudes constitute policy search 
space.
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Automatic adversarial augmentations
Policy Evaluation

Given teacher 𝑓", a sub-policy 𝜌 with magnitude 𝑚! is evaluated by following loss:

                                                                                            where,  
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Automatic adversarial augmentations
Policy Optimization
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Ablation studies: test-time objective
• Our test-time objective outperforms other test-time objectives.
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Ablation studies: PLR
• Our soft-pseudo label refinement module helps to get refined pseudo-labels
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Ablation studies: individual components
• We study the effect of individual loss term on performance below.
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Ablation studies: sensitivity tests
• TeSLA is stable to the change in test-time (a) batch size and (b) learning rate 

hyperparameters compared to competing baselines.
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TeSLA: summary and limitations
• Novel self-learning TTA method utilizing efficient automatic adversarial 

augmentations
• Agnostic to model architectures and source training strategies
• Superior performance from common image corruption to measurement shifts in 

medical imaging

• Assumes test images are class-wise IID distributed!
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Thank You!

Project page:  https://behzadbozorgtabar.com/TeSLA.html


