

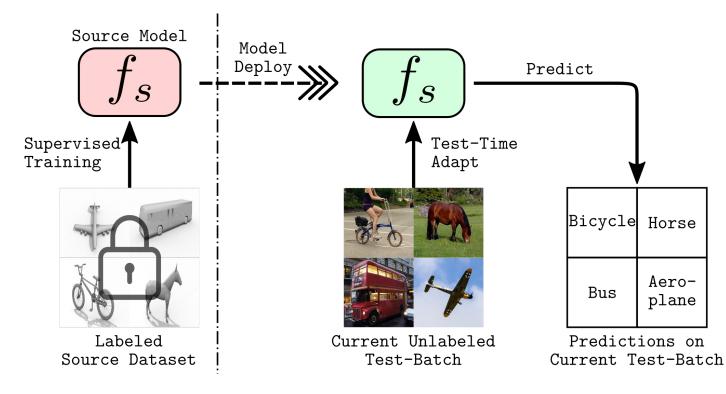
TeSLA: <u>Test-Time Self-Learning With Automatic</u> Adversarial Augmentation

Join us in the poster session: THU-AM-367

¹Devavrat Tomar, ¹Guillaume Vray, ^{1,2}Behzad Bozorgtabar, ^{1,2}Jean-Philippe Thiran ¹EPFL, Switzerland ²CHUV, Switzerland

Test-Time Adaptation (TTA)

- Adapt the pre-trained **source model** to the *distributionally shifted* test domain
- Access to the **source** *training dataset* is restricted

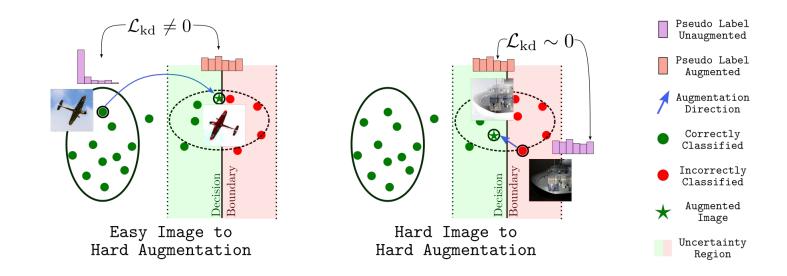


TTA: shortcomings of current methods

- Poor model calibration
- Special model architectures and source training strategies
- Dataset and task-specific methods

TeSLA: motivation

• Simulate hard-to-classify images using adversarially augmented test images



TeSLA: summary of results

Class avg. error rates (%) on classification task

Method	Protocol	Common Image Corruptions					Syn-t	o-Real		rement nift	
		CIFAR10-C		CIFAR100-C		ImageNet-C		VisDA-C		Kather-16	
		0	Μ	0	М	0	М	0	Μ	0	М
Source	N	29	9.1	60	0.4	81	1.8	5	1.5	32	2.0
BN	N	15.6	15.4	43.7	43.3	67.7	67.6	35.4	35.0	18.3	18.2
TENT	N	14.1	12.9	39.0	36.5	57.4	54.2	33.5	29.3	16.2	12.0
SHOT	N	13.9	14.2	39.2	38.7	68.7	68.2	29.4	24.5	14.7	12.0
AdaContrast	N				-			23.1	20.2		-
TTT++	Y	15.8	9.8	44.4	34.1	59.3	-	35.2	34.1	16.7	7.9
TTAC	Y	13.4	9.4	41.7	33.6	58.7	-	32.2	31.1	9.6	5.5
TeSLA	N	12.5	9.7	38.2	32.9	55.0	51.5	17.8	13.5	9.2	3.3
TeSLA-s	Y	12.1	9.7	37.3	32.6	53.1	-	24.0	17.9	9.9	3.1

Class avg. dice score (%) on MRI segmentation task

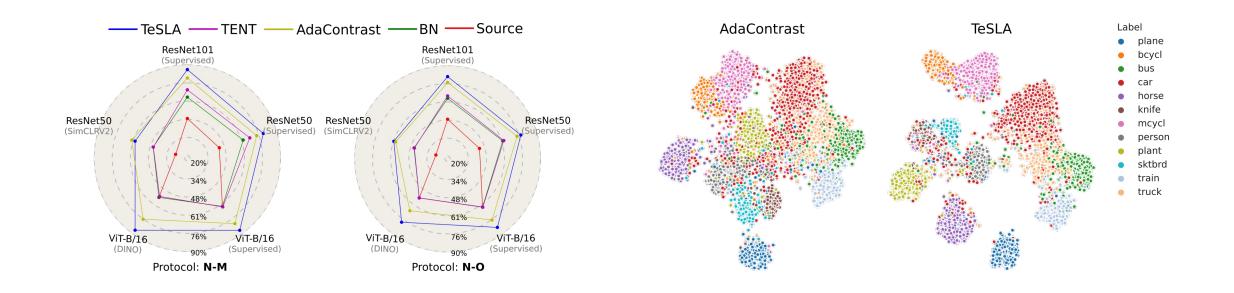
Protocol Source	BN	TENT	PL	OptTTA	TeSLA			
Spinal Cord Site $\{1\} \rightarrow$ Sites $\{2, 3, 4\}$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	81.6±8.3 84.3±4.8	$81.1 {\pm} 9.1$ $84.4 {\pm} 4.7$	$81.7{\pm}8.6$ $84.3{\pm}4.7$	$\begin{array}{c} 84.1{\scriptstyle \pm 4.8} \\ 84.3{\scriptstyle \pm 4.4} \end{array}$	85.3±5.8 85.4±4.4			
Prostate Sites {A, B} → Sites {D, E, F}								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	72.1±15.2 73.1±18.0	74.7±17.9 81.2±9.3	$72.4{\scriptstyle\pm15.2}\\81.1{\scriptstyle\pm9.2}$	83.1±7.7 83.4±7.7	83.5±6.5 84.3±5.8			

Class avg. mIoU (%) on VisDA-S segmentation task

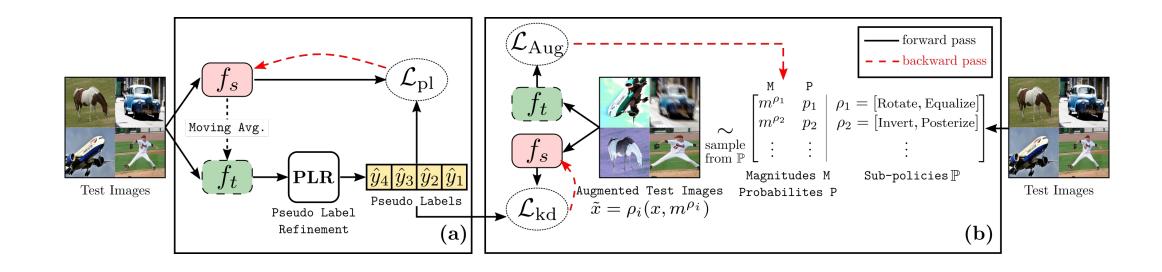
Protocol Source	BN	TENT	PL	CoTTA	TeSLA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36.7	38.3	38.8	37.0	44.5
	38.4	39.2	38.6	39.9	46.0

TeSLA: summary of results

- Agnostic to model architectures and source training strategies
- Better class-wise feature separability

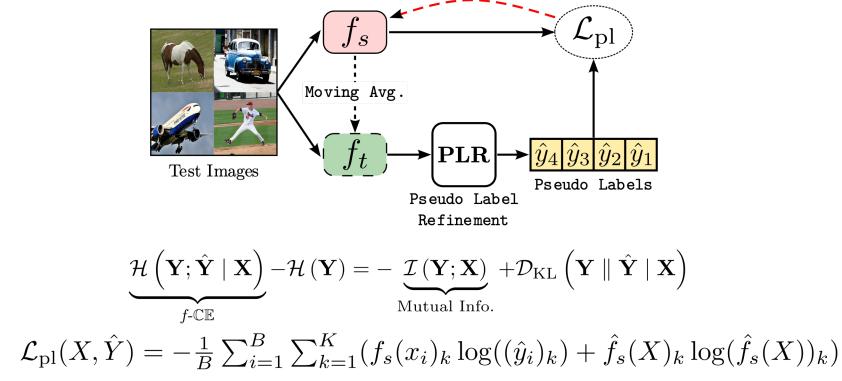


TeSLA: overview



Test-time objective

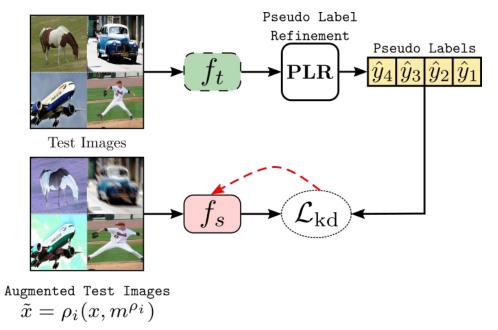
• Flipped cross entropy f-CE as a proxy to teacher-guided mutual information maximization



Test-time objective

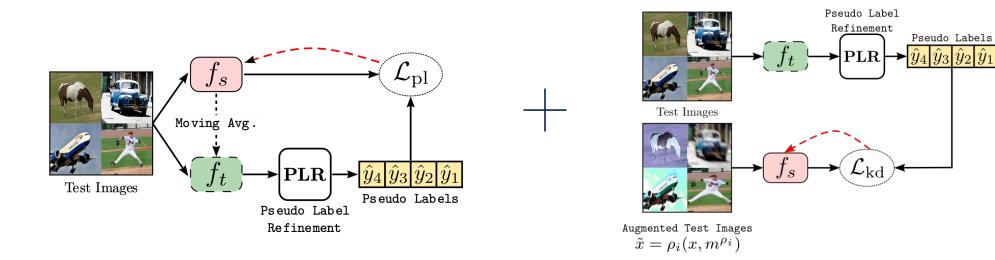
• Knowledge distillation from the teacher to the student using adversarial augmentation

 $\mathcal{L}_{\mathrm{kd}}(\tilde{x}, \hat{y}) = \mathcal{D}_{\mathrm{KL}}(\hat{y} \| f_s(\tilde{x}))$



Test-time objective

• Overall test-time objective:



$$\mathcal{L}_{\text{TeSLA}}(X, \tilde{X}, \hat{Y}) = \mathcal{L}_{\text{pl}}(X, \hat{Y}) + \frac{\lambda_2}{B} \sum_{i=1}^{B} \mathcal{L}_{\text{kd}}(\tilde{x}_i, \hat{y}_i)$$

PLR (Pseudo Label Refinement)

• Average teacher's predictions on weakly augmented views *stored* in an online balanced queue Q.

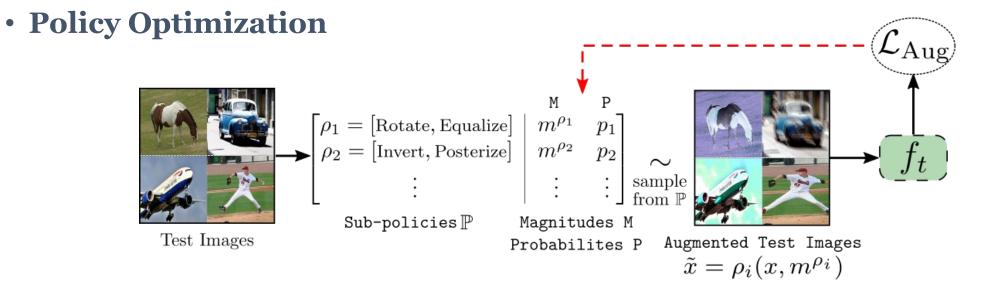
$$\mathbf{z}_t, \mathbf{y}_t \leftarrow \mathbb{E}_{\mathbf{u} \in \rho_w(x)}[g_t(\mathbf{u}), h_t(g_t(\mathbf{u}))]$$
$$\mathbf{Q}[\arg\max(\mathbf{y}_t)].\operatorname{append}(\{\mathbf{z}_t, \mathbf{y}_t\})$$

where, ρ_w denotes weak augmentations, g_t is the encoder, and h_t is the classifier

• Refine pseudo-labels by averaging the soft-pseudo labels of k-nearest neighbors from Q.

$$\hat{y} = \frac{1}{n} \sum \mathcal{N}_{\mathbf{Q},n}(\mathbf{z}_t)$$

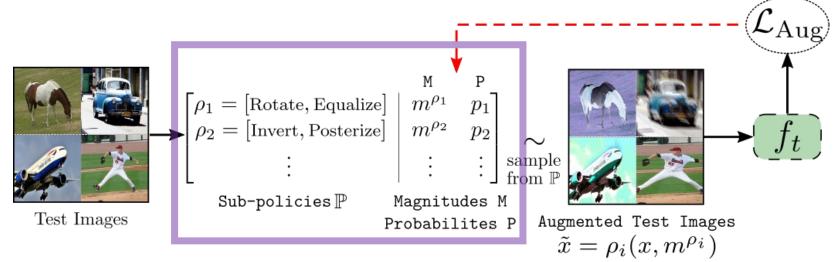
- Policy Search Space
- Policy Evaluation



Policy Search Space \mathbb{P}

Sub-policy (p): A combination of N=2 image operations and characterized by their magnitudes m^{ρ} .

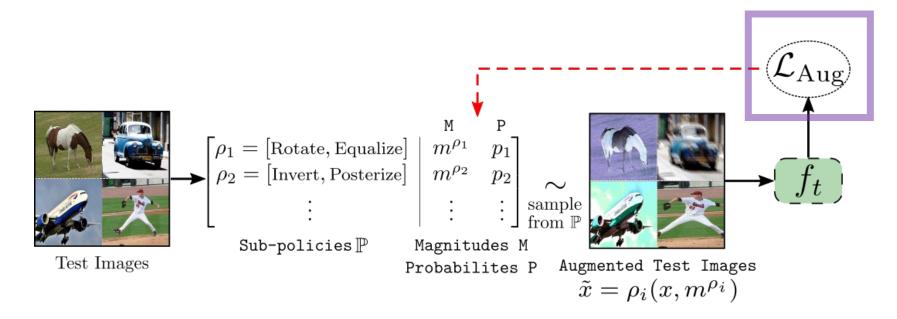
All possible sub-policies with their corresponding magnitudes constitute policy search space.



Policy Evaluation

Given teacher f_t , a sub-policy ρ with magnitude m^{ρ} is evaluated by following loss:

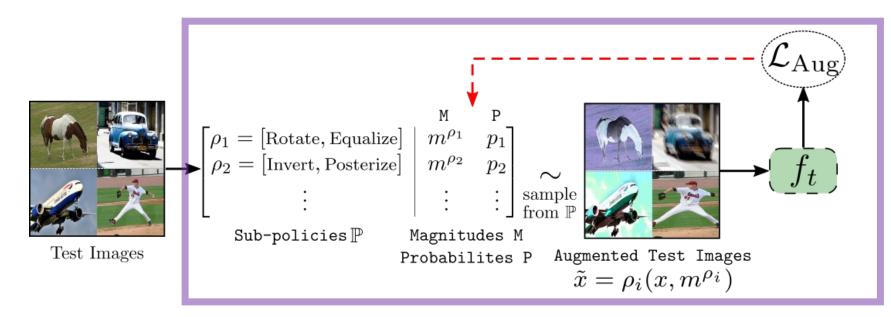
 $\mathcal{L}_{\text{aug}}(\boldsymbol{x}, \rho) = \sum_{k=1}^{K} f_t(\tilde{\boldsymbol{x}}) \log \left(f_t(\tilde{\boldsymbol{x}}) \right) + \lambda_1 r(\tilde{\boldsymbol{x}}, \boldsymbol{x}) \quad \boldsymbol{where,} \quad \tilde{\boldsymbol{x}} = \rho\left(\boldsymbol{x}, m \right)$



Policy Optimization

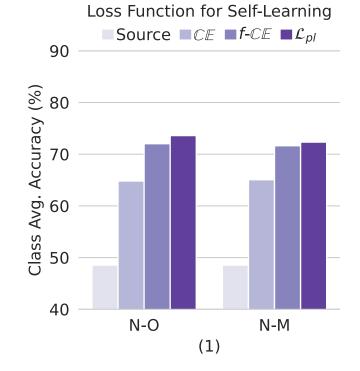
$$\mathbb{E}[\mathcal{L}_{\text{aug}}(x)] = \sum_{i=1}^{\|\mathbb{P}\|} p_i \cdot \mathcal{L}_{\text{aug}}(x, \rho_i)$$

$$\hat{\delta}(x,\rho_i) = \nabla \mathcal{L}_{aug}(x,\rho_i) + \mathcal{L}_{aug}(x,\rho_i) \cdot \nabla \log p_i$$



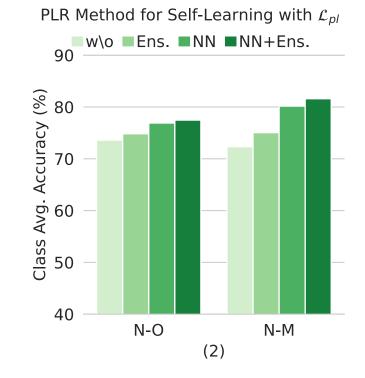
Ablation studies: test-time objective

• Our test-time objective outperforms other test-time objectives.



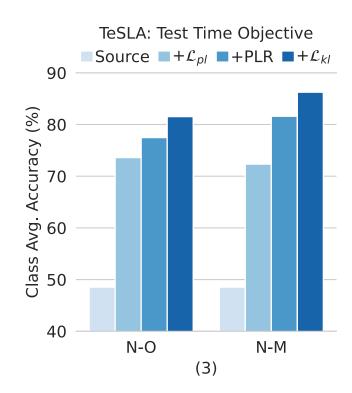
Ablation studies: PLR

• Our soft-pseudo label refinement module helps to get refined pseudo-labels



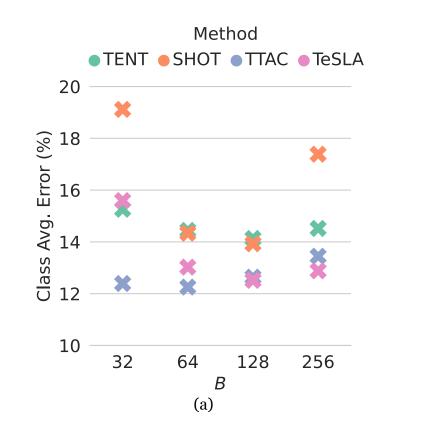
Ablation studies: individual components

• We study the effect of individual loss term on performance below.



Ablation studies: sensitivity tests

• TeSLA is stable to the change in test-time **(a) batch size** and **(b) learning rate** hyperparameters compared to competing baselines.





TeSLA: summary and limitations

- Novel self-learning TTA method utilizing efficient automatic adversarial augmentations
- Agnostic to model architectures and source training strategies
- Superior performance from common image corruption to measurement shifts in medical imaging

• Assumes test images are class-wise IID distributed!

Thank You!

Project page: https://behzadbozorgtabar.com/TeSLA.html