Improving Cross-Modal Retrieval with Set of Diverse Embeddings CVPR 2023, <u>Highlight</u>

Dongwon Kim, Namyup Kim, Suha Kwak

THU-PM-269

Task definition

What is the cross-modal retrieval?

Cross-modal retrieval: The task of searching for data relevant to a query from a database when the query and database have different modalities (image and text).

Ambiguity problem

"Boys wearing helmets carry a bicycle up a ramp at a skate park."

> "Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

Image-to-text ambiguity: An image often contains various contexts, which described with varying captions.

Text-to-image ambiguity: Visual manifestations of a caption vary significantly as captions are highly abstract.

Our method

 \bullet ambiguous semantics of the data.

Embed the data to a set of diverse embedding vectors, where each elements of the set encodes *diverse and*

Our method

Set-prediction module

$$\texttt{attn} = \texttt{softmax} \left(\frac{1}{\sqrt{D}} k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis=`slots'} \right)$$

[1] Object-centric learning with slot attention, NeurIPS, 2020.

Smooth-Chamfer similarity

Results

				11	K Test Im	ages		5K Test Images									
		In	nage-to-T	lext [Te	ext-to-Im	age	DOUN	In	nage-to-7	Text	Te	DOUD				
Method	CA	R@1	R@5	R@10	R@1	R@5	R@10	RSUM	R@1	R@5	R@10	R@1	R@5	R@10	RSUM		
ResNet-152 + B																	
VSE++ [17]	×	64.6	90.0	95.7	52.0	84.3	92.0	478.6	41.3	71.1	81.2	30.3	59.4	72.4	355.7		
PVSE [45]	×	69.2	91.6	96.6	55.2	86.5	93.7	492.8	45.2	74.3	84.5	32.4	63.0	75.0	374.4		
PCME [10]	×	68.8	-	-	54.6	-	-	-	44.2	-	-	31.9	-	-	-		
Ours	×	70.3	91.5	96.3	56.0	85.8	93.3	493.2	47.2	74.8	84.1	33.8	63.1	74.7	377.7		
Faster R-CNN	+ Bi-Gl	RU															
SCAN [†] [30]	1	72.7	94.8	98.4	58.8	88.4	94.8	507.9	50.4	82.2	90.0	38.6	69.3	80.4	410.9		
VSRN [†] [31]	×	76.2	94.8	98.2	62.8	89.7	95.1	516.8	53.0	81.1	89.4	40.5	70.6	81.1	415.7		
CAAN [53]	1	75.5	95.4	98.5	61.3	89.7	95.2	515.6	52.5	83.3	90.9	41.2	70.3	82.9	421.1		
IMRAM [†] [6]	1	76.7	95.6	98.5	61.7	89.1	95.0	516.6	53.7	83.2	91.0	39.7	69.1	79.8	416.5		
SGRAF [†] [14]	1	79.6	96.2	98.5	63.2	90.7	96.1	524.3	57.8	-	91.6	41.9	-	81.3	-		
VSE_{∞} [27]	×	78.5	96.0	98.7	61.7	90.3	95.6	520.8	56.6	83.6	91.4	39.3	69.9	81.1	421.9		
NAAF [†] [52]	1	80.5	96.5	98.8	64.1	90.7	96.5	527.2	58.9	85.2	92.0	42.5	70.9	81.4	430.9		
Ours	X	79.8	96.2	98.6	63.6	90.7	95.7	524.6	58.8	84.9	91.5	41.1	72.0	82.4	430.7		
Ours [†]	×	80.6	96.3	98.8	64.7	91.4	96.2	528.0	60.4	86.2	92.4	42.6	73.1	83.1	437.8		
ResNeXt-101 + BERT																	
VSE∞ [27]	×	84.5	98.1	99.4	72.0	93.9	97.5	545.4	66.4	89.3	94.6	51.6	79.3	87.6	468.9		
VSE_{∞}^{\dagger} [27]	×	85.6	98.0	99.4	73.1	94.3	97.7	548.1	68.1	90.2	95.2	52.7	80.2	88.3	474.8		
Ours	X	86.3	97.8	99.4	72.4	94.0	97.6	547.5	69.1	90.7	95.6	52.1	79.6	87.8	474.9		
Ours [†]	×	86.6	98.2	99.4	73.4	94.5	97.8	549.9	71.0	91.8	96.3	53.4	80.9	88.6	482.0		

Ambiguity problem

"Boys wearing helmets carry a bicycle up a ramp at a skate park."

> "Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards."

Image-to-text ambiguity: An image often contains various contexts, which described with varying captions.

Text-to-image ambiguity: Visual manifestations of a caption vary significantly as captions are highly abstract.

Ambiguity problem

 Conventional embedding models do not resolv as a single embedding vector.

Conventional embedding models do not resolve the ambiguity problem since they represent a sample

Previous work on set-based embedding **PVSE**^[1] & **PCME**^[2]

PVSE

• Represent each sample as a set of embedding vectors

[1] Polysemous Visual-Semantic Embedding for Cross-Modal Retrieval, CVPR, 2019. [2] Probabilistic Embeddings for Cross-Modal Retrieval, CVPR, 2021.

PCME

 Utilize probabilistic embedding where each sample is represented as a set of vectors sampled from a normal distribution

Drawbacks of set-based embedding

• **Sparse supervision** \rightarrow An embedding set most of whose elements remain untrained.

• <u>Set collapsing</u> \rightarrow An embedding set with a small variance which does not encode sufficient ambiguity.

Drawbacks of set-based embedding

<u>Sparse supervision</u> \rightarrow An embedding set most of whose elements remain untrained.

Similarity function used for train & eval

Similarity functions used for training & eval in previous work do not consider the ambiguity of the data.

Model architecture for embedding set

Self-attention modules used for set prediction in the previous work do not explicitly consider **disentanglement between** set elements.

<u>Set collapsing</u> \rightarrow An embedding set with a small variance which does not encode sufficient ambiguity.

 \rightarrow Sparse supervision, Set collapsing

 \rightarrow <u>Set collapsing</u>

Our method

Set-prediction module

$$\texttt{attn} = \texttt{softmax}\left(\frac{1}{\sqrt{D}}k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis=`slots'}\right)$$

Smooth-Chamfer similarity

Overall architecture 2. Set-prediction module

[3] Object-centric learning with slot attention, NeurIPS, 2020.

$$\texttt{attn} = \texttt{softmax}\left(\frac{1}{\sqrt{D}}k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis='slots'}\right)$$

Slot-attn^[3] based attention scheme (**Ours**)

$$\texttt{attn} = \texttt{softmax}\left(\frac{1}{\sqrt{D}}k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis=`inputs'}\right)$$

Conventional transformer attention scheme

Overall architecture 2. Set-prediction module

$$\texttt{attn} = \texttt{softmax}\left(\frac{1}{\sqrt{D}}k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis='slots'}\right)$$

Slot-attn [3] based attention scheme (Ours)

$$\texttt{attn} = \texttt{softmax}\left(\frac{1}{\sqrt{D}}k(\texttt{inputs}) \cdot q(\texttt{slots})^T, \texttt{axis=`inputs'}\right)$$

Conventional transformer attention scheme

This way of normalization lets slots *compete* with each other.
Each slot attends to nearly disjoint sets of local features, and these sets will correspond to the *distinctive semantics*.

Overall architecture 3. Smooth-Chamfer similarity

 SC similarity associates every possible pair (→dense supervision) with different degree of weights (\rightarrow *no set collapsing*)

 $\mathbf{\gamma}$

Overall architecture 3. Smooth-Chamfer similarity

- Gradients for the elements pair are determined by the *relative proximity*.
- This weighting scheme enables *dense supervision without collapsing*.

Experiments

		1K Test Images										-	Method	CA	Image-to-text		Text-to-image		age	RSUM					
		Image-to-Text		Text-to-Image			50107	Image-to-Text			Text-to-Image			Darne		method	CA	R@1	R@5	R@10	R@1	R@5	R@10	Room	
Method	CA	R@1	R@5	R@10	R@1	R@5	R@10	RSUM	R@1	R@5	R@10	R@1	R@5	R@10	RSUM		ResNet-152 + Bi-GRU								
ResNet-152 + Bi-GRU															VSE++	×	52.9	80.5	87.2	39.6	70.1	79.5	409.8		
VSE++ [17]	X	64.6	90.0	95.7	52.0	84.3	92.0	478.6	41.3	71.1	81.2	30.3	59.4	72.4	355.7		PVSE*	×	59.1	84.5	91.0	43.4	73.1	81.5	432.6
PVSE [45]	X	69.2	91.6	96.6	55.2	86.5	93.7	492.8	45.2	74.3	84.5	32.4	63.0	75.0	374.4		PCME*	×	58.5	81.4	89.3	44.3	72.7	81.9	428.1
PCME [10]	X	68.8	-	-	54.6	-	-	-	44.2	-	-	31.9	-	-	-		Ours	×	61.8	85.5	91.1	46.1	74.8	83.3	442.6
Ours	×	70.3	91.5	96.3	56.0	85.8	93.3	493.2	47.2	74.8	84.1	33.8	63.1	74.7	377.7	-	Faster R-CNN + Bi-GRU								
Faster R-CNN + Bi-GRU																-	SCAN [†]	1	67.4	90.3	95.8	48.6	77.7	85.2	465.0
SCAN [†] [30]	1	72.7	94.8	98.4	58.8	88.4	94.8	507.9	50.4	82.2	90.0	38.6	69.3	80.4	410.9		VSRN [†]	×	71.3	90.6	96.0	54.7	81.8	88.2	482.6
VSRN [†] [31]	X	76.2	94.8	98.2	62.8	89.7	95.1	516.8	53.0	81.1	89.4	40.5	70.6	81.1	415.7		CAAN	1	70.1	91.6	97.2	52.8	79.0	87.9	478.6
CAAN [53]	1	75.5	95.4	98.5	61.3	89.7	95.2	515.6	52.5	83.3	90.9	41.2	70.3	82.9	421.1		IMRAM [†]	1	74.1	93.0	96.6	53.9	79.4	87.2	484.2
IMRAM [†] [6]	1	76.7	95.6	98.5	61.7	89.1	95.0	516.6	53.7	83.2	91.0	39.7	69.1	79.8	416.5		SGRAF [†]	1	77.8	94.1	97.4	58.5	83.0	88.8	499.6
SGRAF [†] [14]	1	79.6	96.2	98.5	63.2	90.7	96.1	524.3	57.8	-	91.6	41.9	-	81.3	-		VSE	×	76.5	94.2	97.7	56.4	83.4	89.9	498.1
VSE_{∞} [27]	×	78.5	96.0	98.7	61.7	90.3	95.6	520.8	56.6	83.6	91.4	39.3	69.9	81.1	421.9		NAAF [†]	1	81.9	96.1	98.3	61.0	85.3	90.6	513.2
NAAF \uparrow [52]	 Image: A start of the start of	80.5	96.5	98.8	64.1	90.7	96.5	527.2	58.9	85.2	92.0	42.5	70.9	81.4	430.9		Ours	X	77.8	94.0	97.5	57.5	84.0	90.0	500.8
Ours	X	79.8	96.2	98.6	63.6	90.7	95.7	524.6	58.8	84.9	91.5	41.1	72.0	82.4	430.7		Ours [†]	X	80.9	94.7	97.6	59.4	85.6	91.1	509.3
Ours	× 1	80.6	96.3	98.8	64.7	91.4	96.2	528.0	60.4	86.2	92.4	42.6	73.1	83.1	437.8		D N V I		CDZ	2				,	
ResNeXt-101 + BERT													-	KesNeXt-10	<i>II</i> + <i>B</i>	ERT									
VSE∞ [27]	X	84.5	98.1	99.4	72.0	93.9	97.5	545.4	66.4	89.3	94.6	51.6	79.3	87.6	468.9		VSE_{∞}	×	88.4	98.3	99.5	74.2	93.7	96.8	550.9
VSE_{∞}^{\dagger} [27]	X	85.6	98.0	99.4	73.1	94.3	97.7	548.1	68.1	90.2	95.2	52.7	80.2	88.3	474.8		VSE_{∞}^{\dagger}	×	88.7	98.9	99.8	76.1	94.5	97.1	555.1
Ours	X	86.3	97.8	99.4	72.4	94.0	97.6	547.5	69.1	90.7	95.6	52.1	79.6	87.8	474.9		Ours	×	88.8	98.5	99.6	74.3	94.0	96.7	551.9
Ours [†]	X	86.6	98.2	99.4	73.4	94.5	97.8	549.9	71.0	91.8	96.3	53.4	80.9	88.6	482.0		Ours [†]	×	90.6	99.0	99.6	75.9	94.7	97.3	557.1

- Achieves the state-of-the-art on various benchmarks and settings ullet
- Outperforms some of the previous work that requires x80 FLOPs

R1: Picture of an outdoor place that is very beautiful.

R1: A festival with people and tents outside a clock tower.

R1: <u>A large crowd</u> is attending a community fair.

R1: A crowd of people at a festival type event in front of <u>a clock tower.</u>

R1: Some animals that are around the grass together.

R1: <u>A giraffe</u> and zebras mingle as cars drive out of an animal park.
R1: A giraffe and zebras mingle as <u>cars</u> drive out of <u>an animal park.</u>
R1: A giraffe and <u>zebras</u> mingle as cars drive out of an animal park.

Thank you! Poster: THU-PM-269

