

Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space

Siwon Kim

Jinoh Oh

Sungjin Lee

Seunghak Yu

Jaeyoung Do

Tara Taghavi

One-page Summary

Motivation

Concept direction CLIP latent space

Method

Results

Target class

Counterfactual

source:

Are existing explanations human-understandable?

Attribution-based explanation

• Visual counterfactual explanation

- \rightarrow Conventional visual XAI methods
- Can: Provide important regions

source: Das, Arun, and Paul Rad. "Opportunities and challenges in explainable artificial intelligence (xai): A survey." *arXiv preprint arXiv:2006.11371* (2020). Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019.

Towards human understandable explanation: Concept-based explanation

Concept?

- The units of human-understandable high-level semantics
- Typically defined by words such as "stripe", "white", ...
- Concept Activation Vector (CAV)
 - Positive dataset: samples that exhibit c
 - Negative dataset: samples that exclude *c*
 - CAV = A vector normal to the linear hyperplane

Example: "Stripe" concept

I. Diverging CAVs & 2. Unintended entanglement

source: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." *International conference on machine learning.* 4 PMLR, 2018

I. Diverging CAVs

2. Unintended entanglement

Positive images for "Green"

Positive images for "Grass"

Vision (V) and Language (L) were Separated

Language model embedding space

CLIP enables V&L Joint Embedding Space

CLIP enables textual guidance on images

CLIP embedding space

CLIP enables textual guidance on images

"a photo of cat" "a photo of red cat"

But, the target classifier is not CLIP

• How can we leverage the well-performing CLIP latent space?

 $1.f = [f_{\text{bottom}}, f_{\text{top}}]$

Research Questions

- I. How can we obtain concept direction bank V?
- 2. How can we obtain weight *w*?
- 3. How can we implement projection and inverse projection?

Research Questions

- I. How can we obtain concept direction bank V?
- 2. How can we obtain weight *w*?
- 3. How can we implement projection and inverse projection?

I. Prepare concept direction bank

- Build concept direction vector bank V
 - Given a predefined concept library *C*,
 - Generate prompt pair for concept *c*
 - $[t_{src}^c, t_{trg}^c] = [$ "a photo of object", "a photo of *c* object"]
 - $v_c = MinMaxNormalize(CLIP_{text}(t_{src}^c) CLIP_{text}(t_{trg}^c))$
 - $V = \{v_c | c \in C\}$, where *C* is a predefined concept set

Category	Prompt template				
Color	"A photo of {} object"				
Texture	"A photo of {} object"				
Scene	"A photo of object on {}"				
Material	"A photo of object made of {}"				
Part	"A photo of object containing {}"				
Object	"A photo of object along with {}"				

Research Questions

I. How can we obtain concept direction bank *V*?

- 2. How can we obtain weight w?
- 3. How can we implement projection and inverse projection?

2. Optimize w until the prediction changes to y_t

2. Optimize *w* with the objective function below

$$\min_{w} \mathcal{L} = \mathcal{L}_{CE} + \alpha \cdot \mathcal{L}_{reg} + \beta \cdot \mathcal{L}_{id}$$

• $\mathcal{L}_{CE} = CrossEntropy(f_{top}(g_{inv}(e_p)), y_t)$

- Change the prediction to the target class by minimizing the cross-entropy loss
- \mathcal{L}_{reg}
 - Elastic net regularization: regularize concept importance to be 1) sparse and 2) unique minimum

• $\mathcal{L}_{id} = \left| \left| e_p - e \right| \right|^2$

- Counterfactual approach requires the minimal modification
- Identity loss to constrain the minimal perturbation

Research Questions

- I. How can we obtain concept direction bank *V*?
- 2. How can we obtain weight w?
- 3. How can we implement projection and inverse projection?

3. Prepare projector and inverse projector

3. Prepare projector and inverse projector

- Additionally finetune with cycle consistency loss
 - $\mathcal{L}_{\text{finetune}} = \mathcal{L}_{\text{proj}} + \mathcal{L}_{\text{inv}} + \mathcal{L}_{\text{cycle}}$

•
$$\mathcal{L}_{\text{cycle}} = \left| \left| f_{\text{bottom}}(x) - g_{\text{inv}} \left(g_{\text{proj}}(f_{\text{bottom}}(x)) \right) \right| \right|^2$$

Experimental setup

- Target model
 - CLIP+linear models
 - Trained on ImageNet/Animal with Attributes2 (AWA2)/Caltech-UCSD Birds-200-2011 (CUB)
 - Shares the embedding space with CLIP \rightarrow Projection is not needed
 - ResNet18 models
 - Trained on ImageNet/AWA2/CUB
 - Does not share the embedding space with CLIP \rightarrow Projection is needed
- Concept library C
 - Reduce BRODEN for ImageNet-trained models
 - AWA2, CUB for AWA2-trained and CUB-trained models, respectively

Qualitative evaluation

Qualitative Comparison between Ours and CCE

• Spurious correlation in dataset collection of CCE led to inaccurate interpretation

Positive images for "Green"

Positive images for "Grass"

Debugging misclassification cases

→

(a) Misclassified as

"Rhinoceros"

Original image

- Correct answer
- "Hippopotamus"

(b) Backgroundedited image

Prediction "Hippopotamus"

(C) Examples of "Rhinoceros"

Examples of "Hippopotamus"

Quantitative Evaluation

- Lack of ground truth explanation
 - Especially for conceptual explanation
 - Some previous works often skip quantitative evaluation

- Repurpose existing datasets with class-wise attributes
 - . AWA2 dataset
 - 85 binary attributes are provided for 50 animal classes
 - 2. CUB dataset
 - 312 continuous attributes are provided for 200 bird classes

Examples of Ground Truth Attributes

AWA2 attribute labels

CUB attribute labels

Polar bear

Quantitative Evaluation Protocol

- Since our method adopts counterfactual approach,
 - A_{y_0} : Attributes of the original class, A_{y_t} : Attributes of the target class
 - Only the difference between two attributes is our interest
 - Consider only if the two elements of the attributes are different
 - $A_{\text{GT}} = [A_{y_t}[i] A_{y_o}[i] \text{ for } i \text{ in range}\left(\text{len}(A_{y_o})\right) \text{ if } A_{y_o}[i] \neq A_{y_t}[i]]$

• **Report** AUROC(A_{GT} , I)

Quantitative Comparison w/ Baseline-CCE

• 26% improved AUROC compared to Baseline-CCE

Target model	Dataset	Library	CCE	Ours
CLIP+Linear	AwA2 CUB	$C_{ m AwA2} \ C_{ m CUB}$	0.6436 0.7066	0.8132 0.7891
ResNet18	AwA2 CUB	$C_{ m AwA2} \ C_{ m CUB}$	0.6113 0.6979	0.7314 0.7750
ResNet50	AwA2 CUB	$C_{ m AwA2} \ C_{ m CUB}$	0.5811 0.6811	0.7316 0.7336

Thank You!