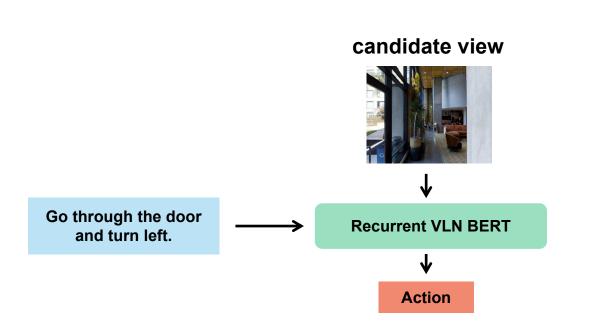


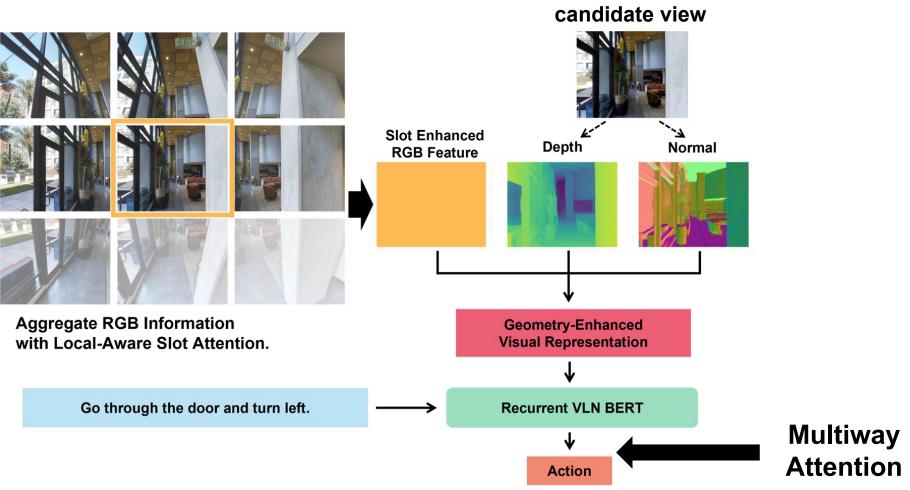
GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot Attention for Vision-and-Language Navigation

Jingyang Huo* Qiang Sun* Boyan Jiang* Haitao Lin Yanwei Fu Fudan University

THU-PM-249


* Indicates equal contributions.

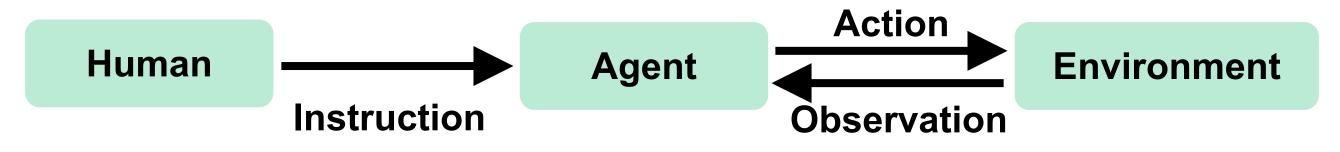
Overview


Previous Work

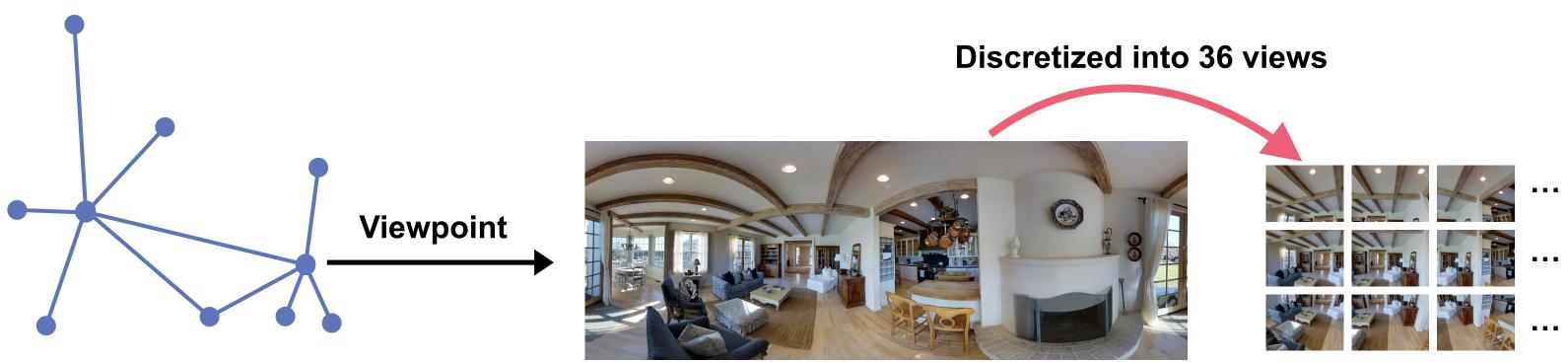
- Utilize RGB images only; \succ
- Lack local spatial context around \triangleright candidate view.

Previous Work

- \geq Omnidata;
- \geq
- \triangleright


Compensate RGB images with depth maps and normal maps estimated with

Learn geometry-enhanced visual representation with a two-stage slot-based module; Encourage different phrases of input instruction to focus on the most informative visual observation (e.g. texture, depth) with the multiway attention module.


VLN Task

Vision-and-Language Navigation

Given a natural language instruction, agent makes decision about the next move automatically based on past and current visual observations.

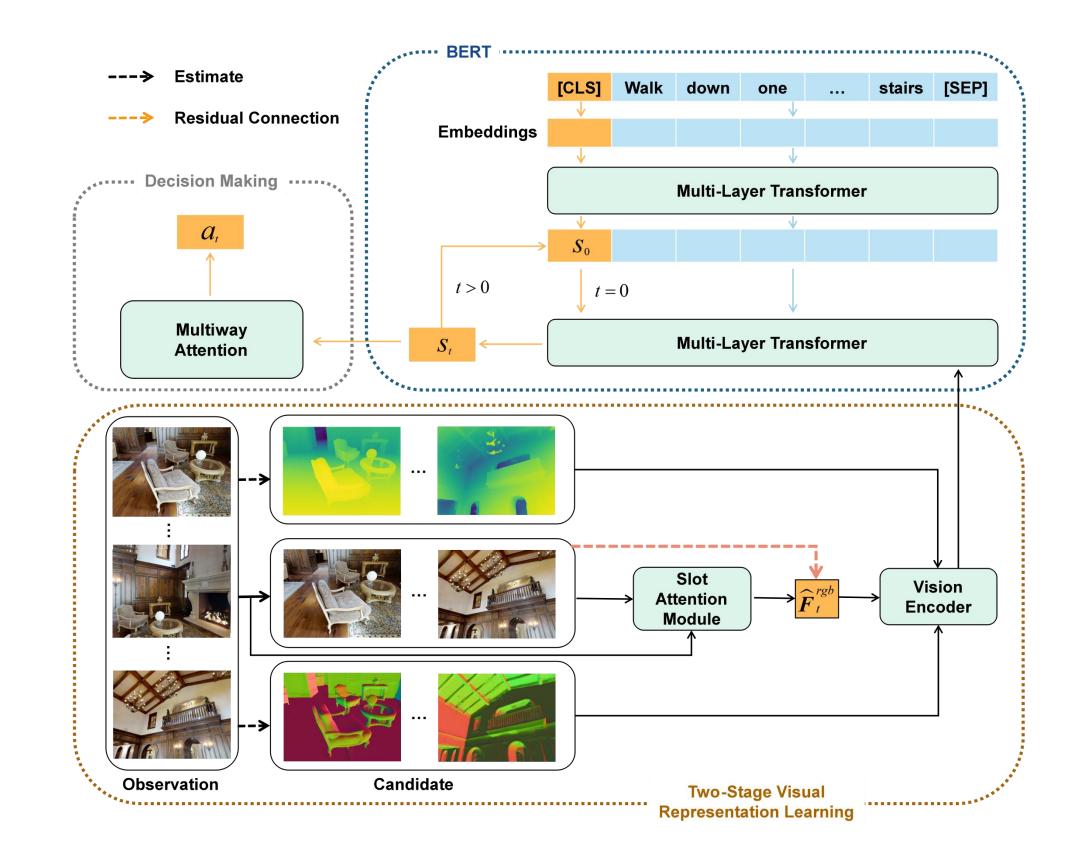
Room-to-Room Navigation Environment

Pipeline

Inputs:

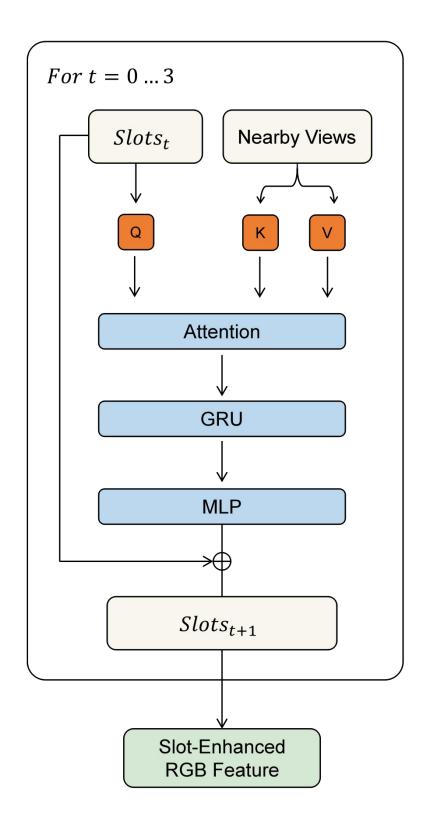
- Language Inputs (a user instruction)
- Visual Inputs (a set of visual observations)

BERT:


Follow BERT encoder[1] to process the language input and obtain the state vector.

Two-Stage Visual Representation Learning:

Compensate RGB images with depth maps and normal maps estimated with Omnidata; Learn geometry-enhanced visual representation with a two-stage slot-based module.

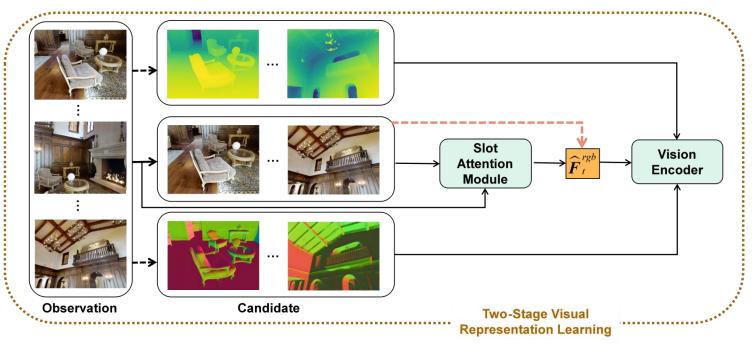

Decision Making:

Weight matching scores of the three modalities with the multiway attention module.

[1] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez Opazo, and Stephen Gould. VIn bert: A recurrent vision-and-language bert for navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1643–1653, 2021.

Two-Stage Visual Representation Learning

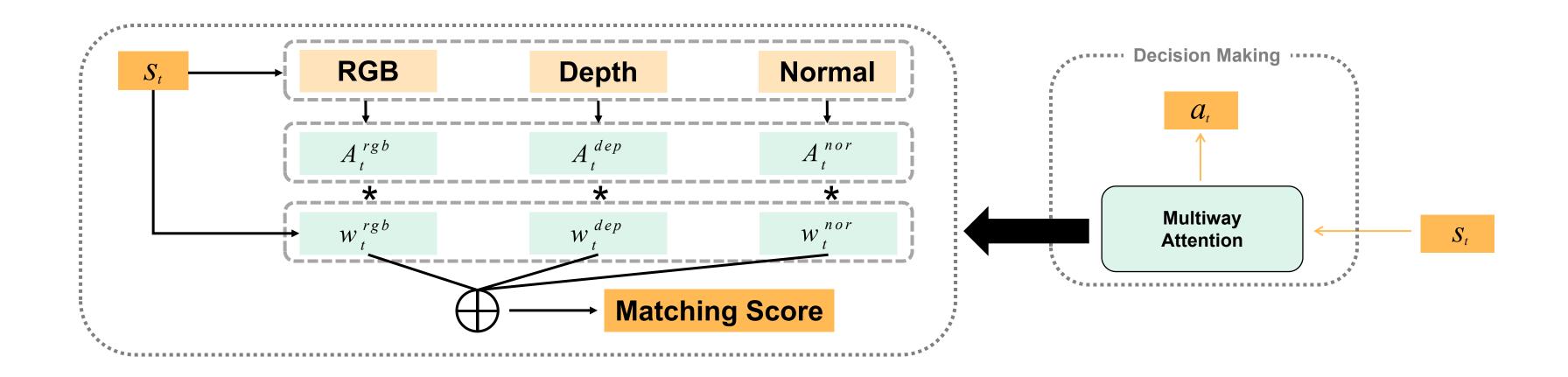
Visual Features


$$\boldsymbol{F}_t^* = [\boldsymbol{C}_t^*; \boldsymbol{F}_t^{ang}], \quad * \in [rgb, dep, nor]$$

Local-Aware Slot Attention

Make each candidate views aggregate information from the nearby observation views according to the spatial proximity principle.

Geometry-enhanced Visual Representation


$$\begin{split} \boldsymbol{F}_t &= \left[\hat{\boldsymbol{F}}_t^{rgb} [...,: d_C]; \boldsymbol{C}_t^{dep}; \boldsymbol{C}_t^{nor}; \boldsymbol{F}_t^{ang} \right] \\ \hat{\boldsymbol{F}}_t &= \mathrm{LN}(\mathrm{FC}(\boldsymbol{F}_t)) \end{split}$$

Multiway Attention

Dynamically weight matching scores of the three modalities with the multiway attention module.

$$\boldsymbol{score}_t^{total} = w_t^{rgb} \boldsymbol{A}_t^{rgb} + w_t^{dep} \boldsymbol{A}_t^{dep} + w_t^{nd}$$

Main Results

Success Rate (SR): the ratio of agents eventually stopping within 3 meters of the destination; Success Weighted by Path Length (SPL): SR weighted by the inverse of TL. A higher SPL score indicates a better balance between achieving the goal and taking the shortest path.

	Val Seen			Val Unseen			Test Unseen					
Agent	TL↓	NE↓	SR↑	SPL↑	TL↓	NE↓	SR↑	SPL ↑	TL↓	NE↓	SR↑	SPL↑
RANDOM [2]	9.58	9.45	16		9.77	9.23	16	_	9.93	9.77	13	12
Human	-	-	-	_	-	-	-	-	11.85	1.61	86	76
Seq-to-Seq [2]	11.33	6.01	39	1	8.39	7.81	22	-	8.13	7.85	20	18
Speaker-Follower [8]	-	3.36	66	-	-	6.62	35	-	14.82	6.62	35	28
Self-Monitoring [9]	-	-	-	-	-	-	- 1	-	18.04	5.67	48	35
Reinforced Cross-Modal [32]	10.65	3.53	67	-	11.46	6.09	43	-	11.97	6.12	43	38
EnvDrop [30]	11.00	3.99	62	59	10.70	5.22	62	48	11.66	5.23	51	47
AuxRN [37]	-	3.33	70	67	-	5.28	55	50	-	5.15	55	51
PREVALENT [11]	10.32	3.67	69	65	10.19	4.71	58	53	10.51	5.30	54	51
PRESS [18]	10.35	3.09	71	67	10.06	4.31	59	55	10.52	4.53	57	53
AirBERT [10]	11.09	2.68	75	70	11.78	4.01	62	56	12.41	4.13	62	57
VLN 🖒 BERT [15]	11.13	2.90	72	68	12.01	3.93	63	57	12.35	4.09	63	57
GeoVLN (Ours)	11.98	3.17	70	65	11.93	3.51	67	61	13.02	4.04	63	58
HAMT [4]	11.15	2.51	76	72	11.46	2.29	66	61	12.27	3.93	65	60
GeoVLN [†] (Ours)	10.68	2.22	79	76	11.29	3.35	68	63	12.16	3.95	65	61

Table 1. Comparison of **OUR MODEL** with the previous state-of-the-art methods on R2R dataset. [†] indicates the results with HAMT as the backbone. The primary metric is SPL.

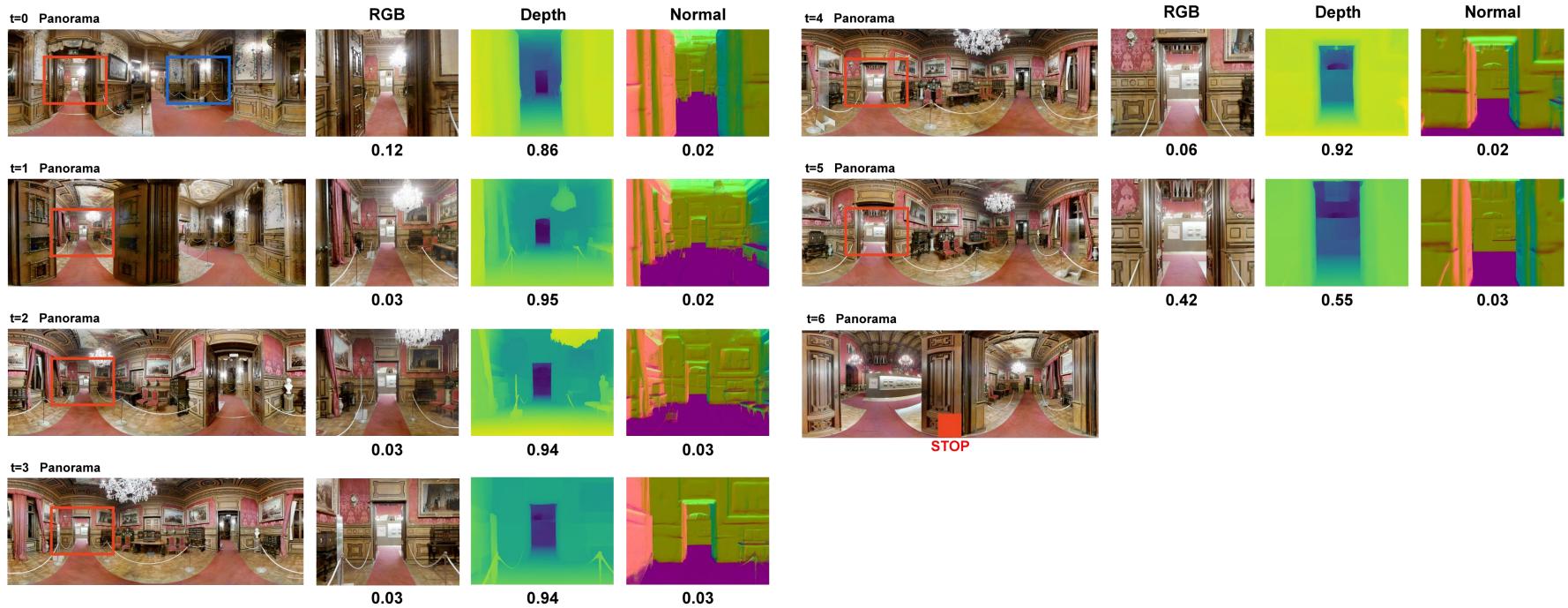
Ablation Study

		Input		Val	Seen	Val Unseen		
Model	RGB	DEPTH	NORMAL	SR↑	SPL↑	SR↑	SPL↑	
Baseline	\checkmark			69.83	64.21	64.50	58.35	
Baseline	\checkmark	\checkmark		66.99	63.28	63.86	58.58	
Baseline	\checkmark		\checkmark	68.46	63.66	62.71	57.20	
Baseline	\checkmark	\checkmark	\checkmark	66.41	62.51	64.75	59.31	
LSA	\checkmark			67.58	63.06	64.62	59.78	
LSA	\checkmark	\checkmark	\checkmark	68.66	63.92	66.54	60.62	
LSA + MAtt	\checkmark			68.46	63.92	66.11	60.31	
LSA + MAtt (Full)	\checkmark	\checkmark	\checkmark	69.64	64.86	66.75	61.00	

Table 2. Ablation study on multi-modal visual inputs and LSA module with VLN 🖱 BERT as the backbone.

Visualization

How the **local-aware slot attention** module aggregates local observations to candidate views.


Instruction: "Pass the pool then go into the".

Instruction: "Walk up stairs ...".

Visualization

How multiway attention facilitates decision-making.

Instruction: "Follow the red carpet through the double doors. Continue straight through the room and wait in the doorway with the double doors at the end."

GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot Attention for Vision-and-Language Navigation

Jingyang Huo* Qiang Sun* Boyan Jiang* Haitao Lin Yanwei Fu Fudan University

Thank you!

* Indicates equal contributions.

