THU-PM-141

Feature Representation Learning with Adaptive Displacement Generation and Transformer Fusion for Micro-Expression Recognition

Zhijun Zhai¹, Jianhui Zhao^{1*}, Chengjiang Long², Wenju Xu³, Shuangjiang He⁴, Huijuan Zhao⁴

¹School of Computer Science, Wuhan University, Wuhan, Hubei, China
²Meta Reality Labs, Burlingame, CA, USA
³OPPO US Research Center, InnoPeak Technology Inc, Palo Alto, CA, USA
⁴FiberHome Telecommunication Technologies Co., Ltd, Wuhan, Hubei, China

zhijunzhai@whu.edu.cn, jianhuizhao@whu.edu.cn, clong1@meta.com, wenjuxu123@gmail.com

*This work was supervised by Jianhui Zhao.

Micro Expression

Facial muscle movements under mental stress micro-responses. **Traits:**

- <u>Subtle</u> and <u>short-lasting</u> for only 1/25th to 1/5th of a second.
- <u>Unconscious</u> reactions that reveal <u>real</u> emotions.

Images from TV series "lie to me".

Application

criminal investigation²

General:

- Be aware of the situation, avoiding danger or deception.
- Understand or induce the thoughts of others.

business negotiation¹

Challenge:

- Intrinsically low intensity and short duration.
- Heavy labor and time cost for labeling datasets.

¹Images from https://www.youtube.com/watch?v=c4Oed7K7M9s. ²Images from TV series "lie to me".

Dynamic Feature

Optical Flow¹

Limitations:

- Not integrated with subsequent neural networks. \bullet
- Non-adaptive to a specific task.
- Learning-based approaches are under-explored in ME recognition.

¹videos from https://www.youtube.com/watch?v=5VyLAH8BhF8. ²M. Verma et, al, IEEE MultiMedia, 2020.

FRL-DGT Framework

Datasets

SMIC

SAMM

CASME II

Datasats	Subjects	Samples									
Datasets	Subjects	Negative	Positive	Surprise	Total						
SAMM	28	92	26	15	133						
SMIC	16	70	51	43	164						
CASME II	24	88	32	25	145						
Total	68	250	109	83	442						

- Negative: Disgust, Contempt, Anger, Repression, Fear, Sadness
- Positive: Happiness
- Surprise: Surprise

Experimental Results

Table 1. Performance comparison of the SOTA methods and our proposed FRL-DGT.

Method	Year	Туре	Full		SMIC	C Part	SAM	M Part	CASME II Part		
Wethod			UF1	UAR	UF1	UAR	UF1	UAR	UF1	UAR	
LBP-TOP	2014	Hand-Crafted	0.588	0.579	0.200	0.528	0.395	0.410	0.703	0.743	
Bi-WOOF	2018	Hand-Crafted	0.630	0.623	0.573	0.583	0.521	0.514	0.781	0.803	
CapsuleNet	2019	Deep-Learning	0.652	0.651	0.582	0.588	0.621	0.599	0.707	0.702	
STSTNet	2019	Deep-Learning	0.735	0.761	0.680	0.701	0.659	0.681	0.838	0.869	
RCN-A	2020	Deep-Learning	0.743	0.719	0.633	0.644	0.760	0.672	0.851	0.812	
GEME	2021	Deep-Learning	0.740	0.750	0.629	0.657	0.687	0.654	0.840	0.851	
MERSiamC3D	2021	Deep-Learning	0.807	0.799	0.736	0.760	0.748	0.728	0.882	0.876	
FeatRef	2022	Deep-Learning	0.784	0.783	0.701	0.708	0.737	0.716	0.892	0.887	
FRL-DGT	2022	Deep-Learning	0.812	0.811	0.743	0.749	0.772	0.758	0.919	0.903	
EMRNet*	2019	Deep-Learning	0.789	0.782	<u>0.746</u>	<u>0.753</u>	<u>0.775</u>	0.715	0.829	0.821	
FGRL-AUF*	2021	Deep-Learning	0.791	0.793	0.719	0.722	<u>0.775</u>	0.789	0.880	0.871	
ME-PLAN*	2022	Deep-Learning	0.772	0.786	0.713	0.726	0.716	0.742	0.863	0.878	

best results

second best results

* use different datasets

higher scores

Experimental Results

Method DGM		AU	Full-face	Global	Local	Eu B Attn	Full		SMIC Part		SAMM Part		CASME II Part	
Method	DOW	Regions	Fusion	Fusion	Fusion	Fu-D-Atur	UF1	UAR	UF1	UAR	UF1	UAR	UF1	UAR
M0	\rightarrow OpticalFlow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.741	0.718	0.671	0.662	0.695	0.662	0.846	0.834
M 1	\rightarrow OF+NORM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.758	0.739	0.671	0.667	0.778	0.730	0.869	0.831
M2	\rightarrow DynamicImage	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.739	0.720	0.684	0.679	0.762	0.745	0.759	0.716
M3	w/o self-supervise	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.778	0.777	0.707	0.718	0.697	0.677	0.914	0.889
M4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\rightarrow Fu-A-Attn	0.797	0.792	0.746	0.746	0.734	0.719	0.898	0.885
M5	\checkmark	\rightarrow 3x3 image patches	\checkmark	\checkmark	\checkmark	\checkmark	0.765	0.765	0.665	0.673	0.754	0.734	0.894	0.876
M6	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	0.773	0.774	0.689	0.698	0.758	0.704	0.876	0.881
M7	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	0.781	0.765	0.741	0.745	0.725	0.672	0.848	0.838
M8	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	0.782	0.773	0.701	0.706	0.711	0.671	0.904	0.886
M9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.812	0.811	0.743	0.749	0.772	0.758	0.919	0.903

Table 2. Ablation study of our proposed network.

→ X: replace the corresponding component with X
OF+NORM: normalized OpticalFlow
Fu-B-Attn: linear fusion before attention
Fu-A-Attn: linear fusion after attention

Visualization

Visualization

Visualization of dynamic features.

10

Conclusion & Future Work

Conclusion

- Propose a novel end-to-end **FRL-DGT** for ME recognition from onset-apex pairs.
- Design a convolutional **DGM** with self-supervised learning for targeted dynamic feature extraction, making full use of the subsequent classification supervision information.
- Design a multi-level **Transformer Fusion** module with linear fusion before attention mechanism for effective learning and integration.

Future Work

- Add an apex detection module to extend our method to ME segments with unknown apex index.
- Explore more efficient fusion mechanisms.

Paper QR Code:

https://www.chengjianglong.com/publications/FRLDGT_CVPR.pdf

