

CHALMERS

Privacy-Preserving Representations are not Enough -**Recovering Scene Content from Camera Poses.**

Torsten Sattler³

Kunal Chelani¹

¹Chalmers University of Technology ²Visual Recognition Group, Department of Electrical Engineering, CTU in Prague ³Czech Institute of Informatics, Robotics and Cybernetics, CTU in Prague

Fredrik Kahl¹

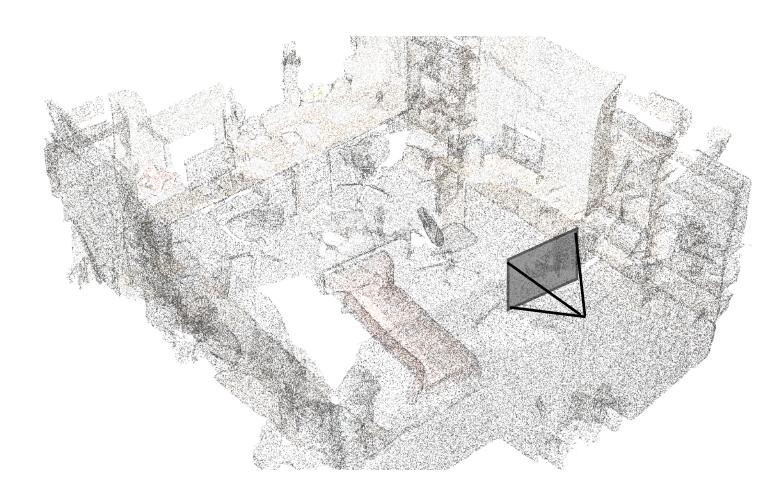
Zuzana Kukelova²

WED-PM-074

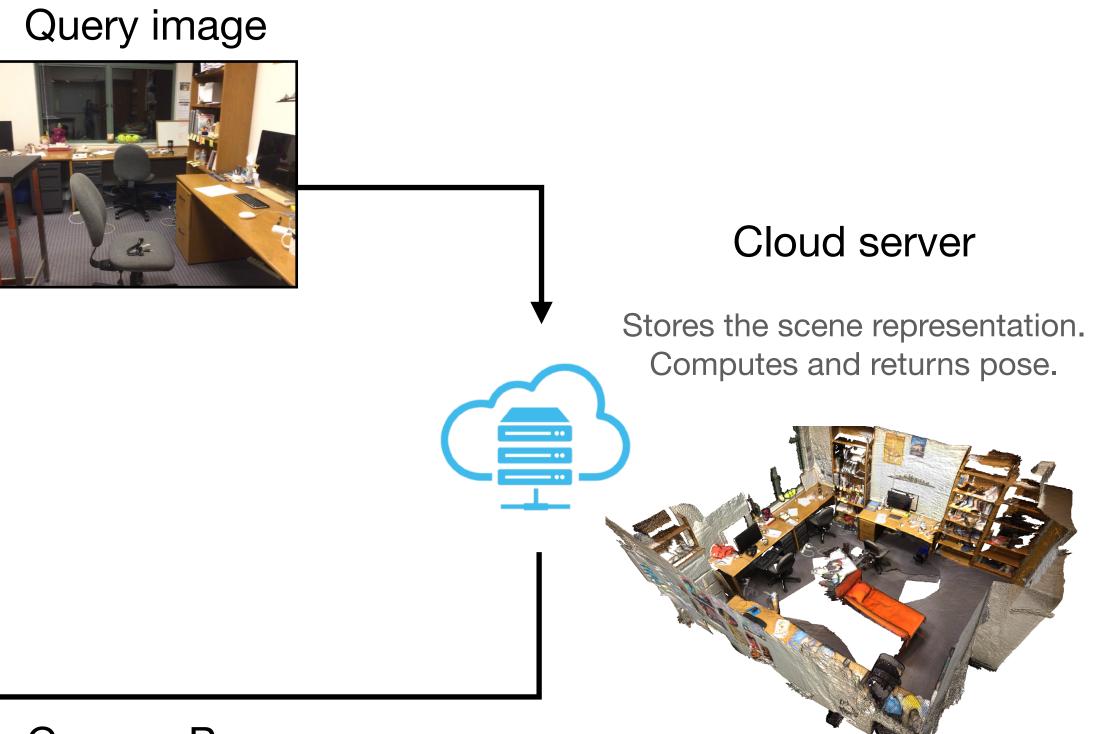
Query image

3D Scene defining coordinate system

Visual localization



Camera pose



Client device

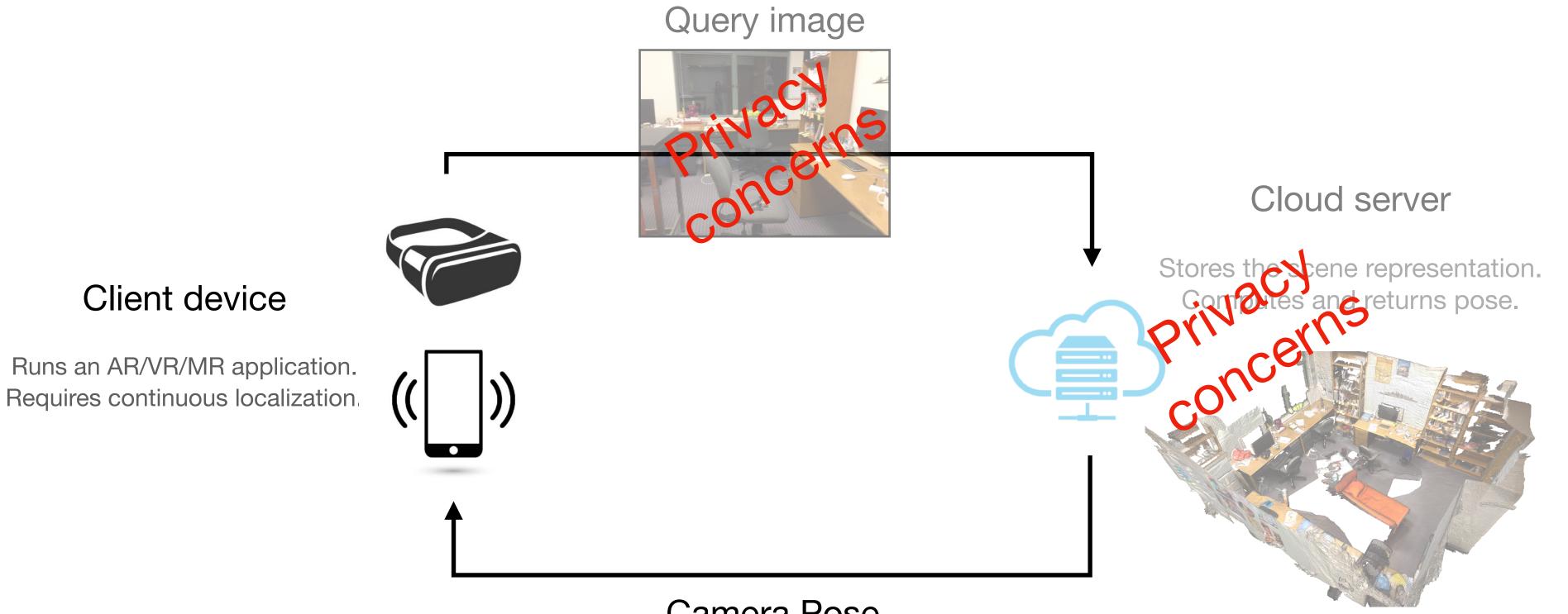
CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Runs an AR/VR/MR application. Requires continuous localization.

Client-server based visual localization

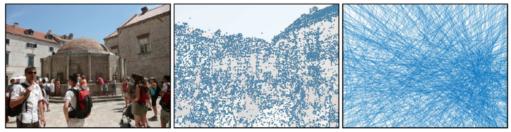
Camera Pose

CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE



Client-server based visual localization

Camera Pose

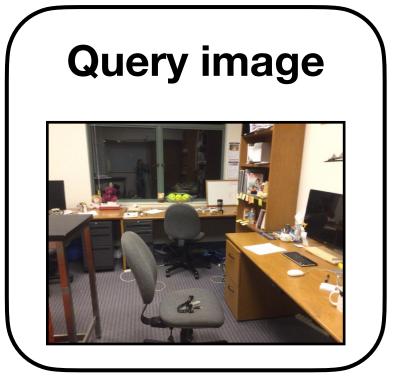


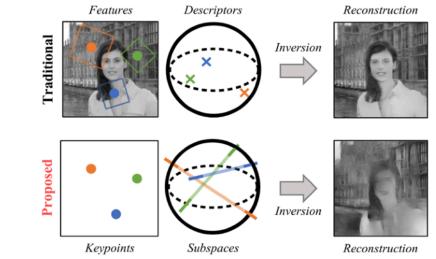
(a) Query Image

CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

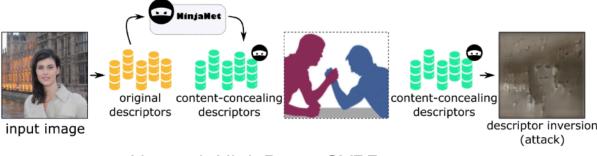
(b) 2D Feature Points (c) 2D Feature Lines

Speciale et al. Privacy Preserving Image Queries for Camera Localization, CVPR 2019



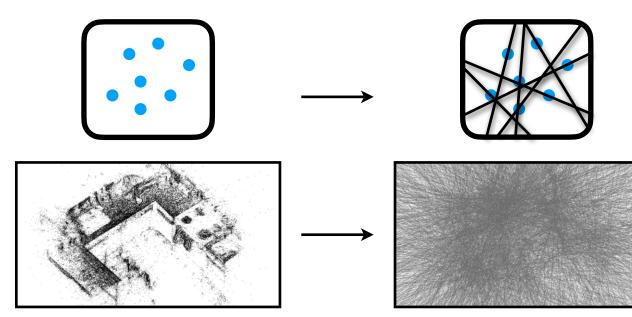


Dusmanu et al. Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings, CVPR 2021

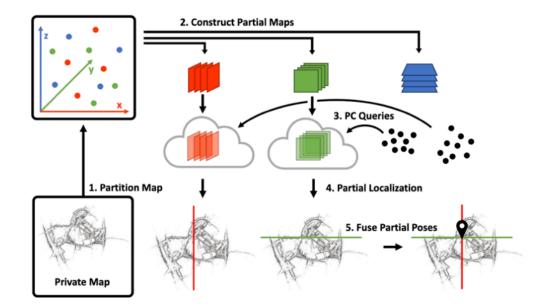


Ng et al. NinjaDesc, CVPR 2022

Privacy-preserving representations



Speciale et al. Privacy Preserving Image-Based Localization, CVPR 2019

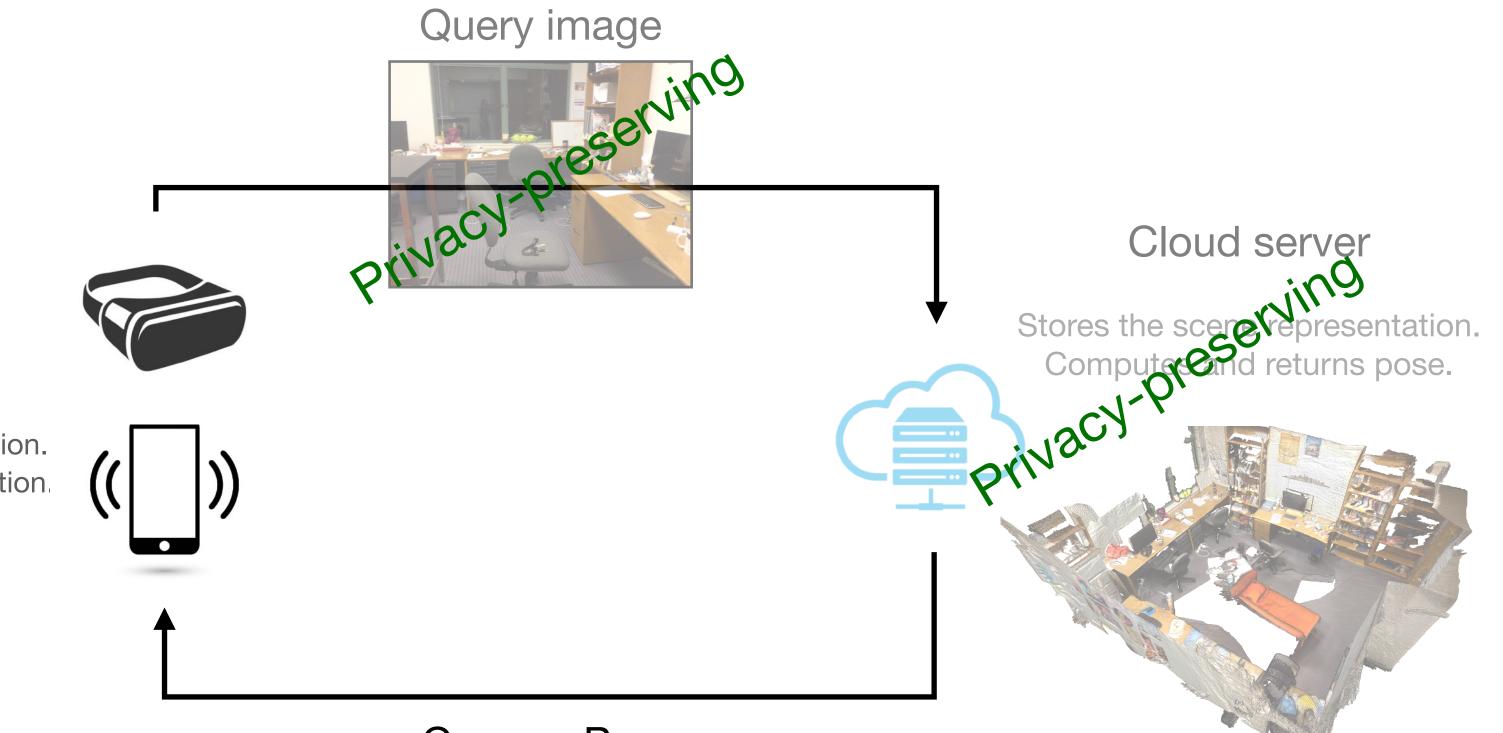


Geppert et al. Privacy Preserving Partial Localization, CVPR 2022

This paper

CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Runs an AR/VR/MR application. Requires continuous localization.

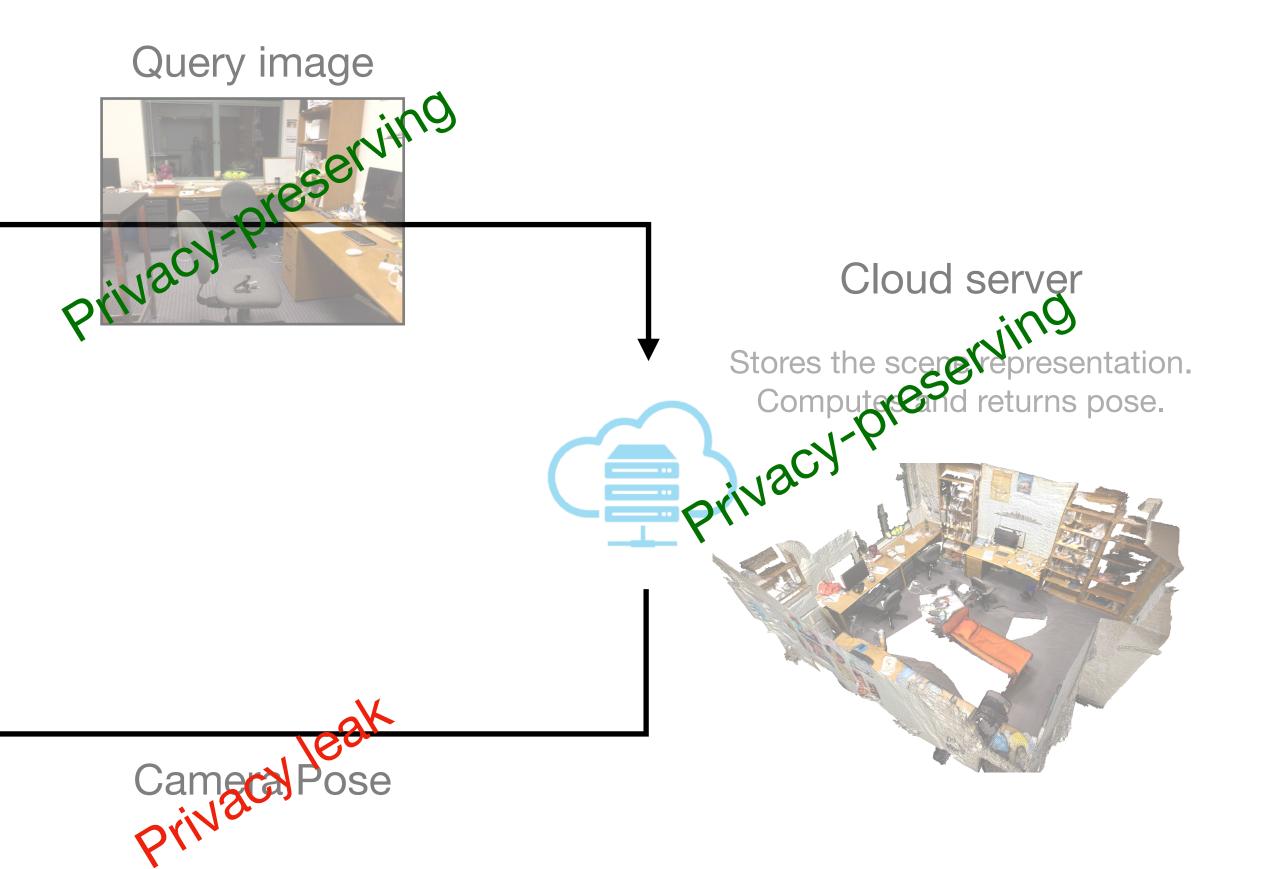


Camera Pose

This paper

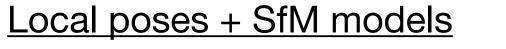
CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

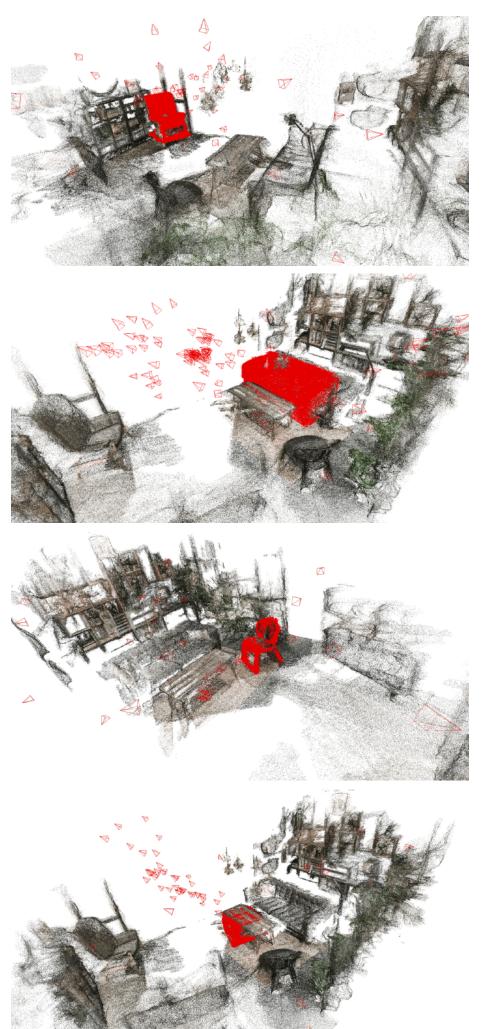
Runs an AR/VR/MR application. Requires continuous localization.

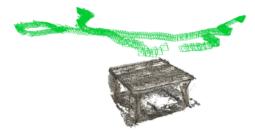


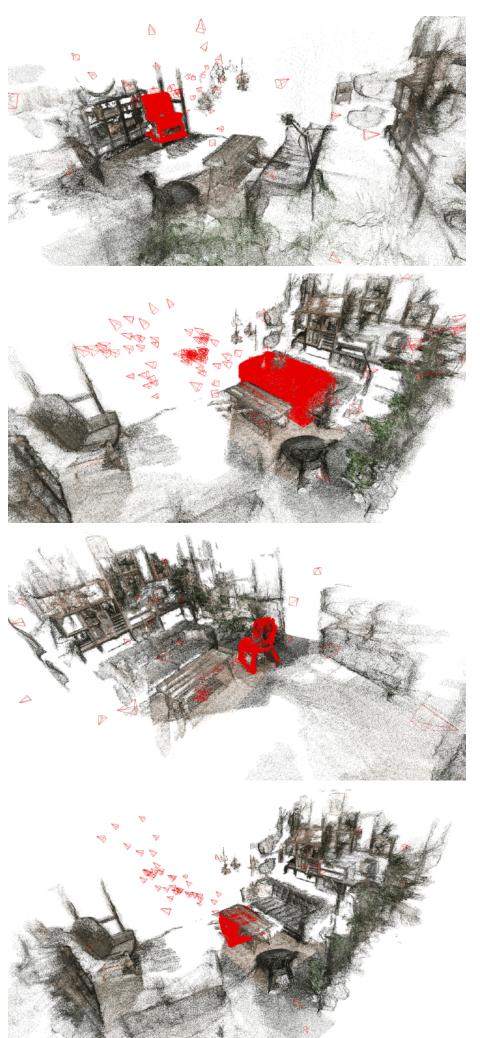
Recovering Scene Content from Camera Poses

Object Images









Poses from localization

Recovered scene layout

Inferred layout in colour against Underlying scene in grey

CHALMERS

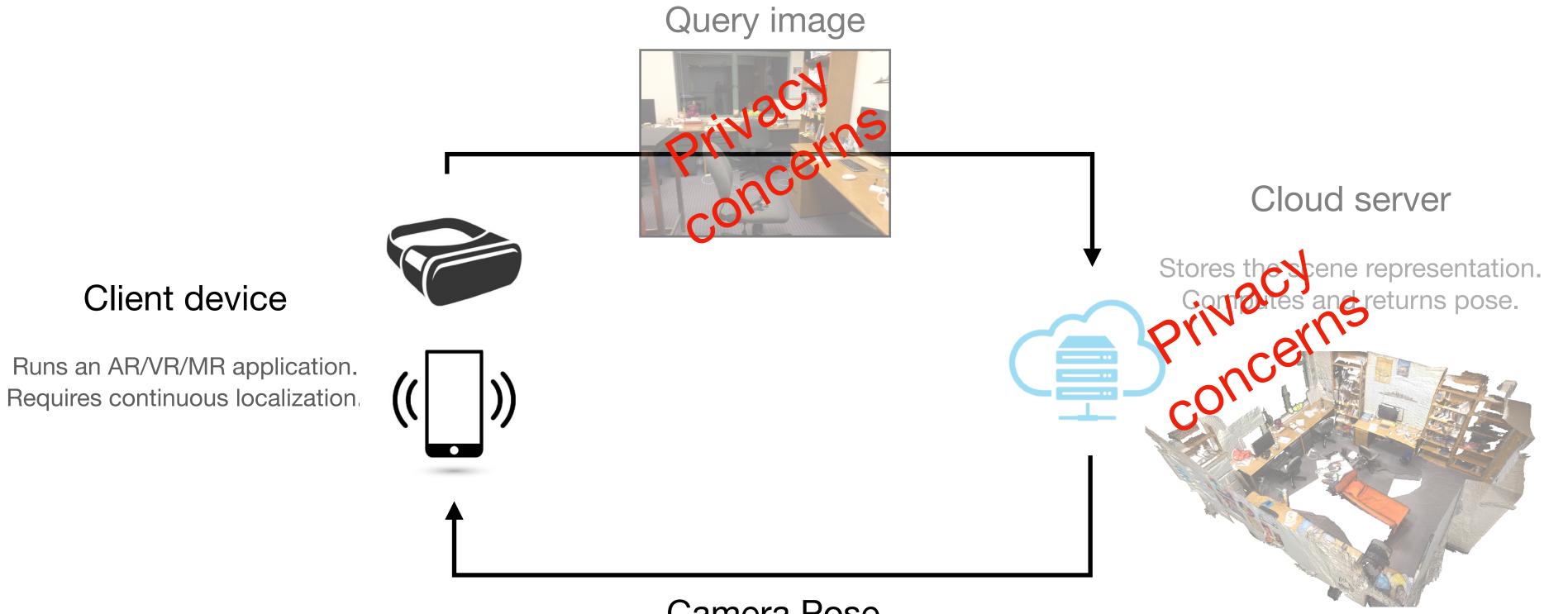
Privacy-Preserving Representations are not Enough -Recovering Scene Content from Camera Poses.

Kunal Chelani¹ Torsten Sattler³

¹Chalmers University of Technology ²Visual Recognition Group, Department of Electrical Engineering, CTU in Prague ³Czech Institute of Informatics, Robotics and Cybernetics, CTU in Prague

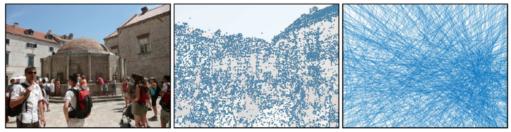
er³ Fredrik Kahl¹ Zuzana Kukelova²

CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE



Client-server based visual localization

Camera Pose

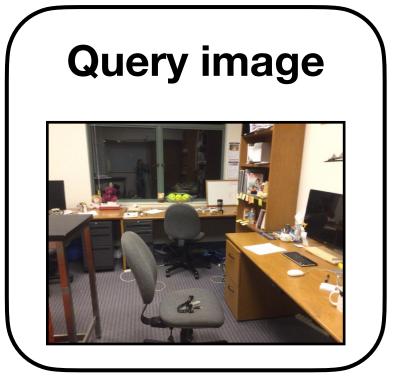


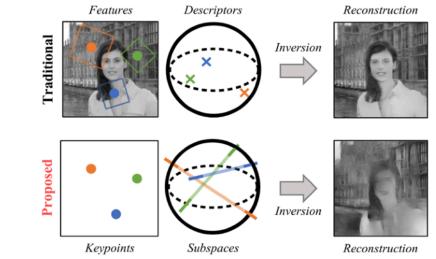
(a) Query Image

CZECH INSTITUTE OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

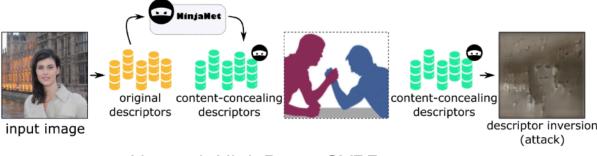
(b) 2D Feature Points (c) 2D Feature Lines

Speciale et al. Privacy Preserving Image Queries for Camera Localization, CVPR 2019



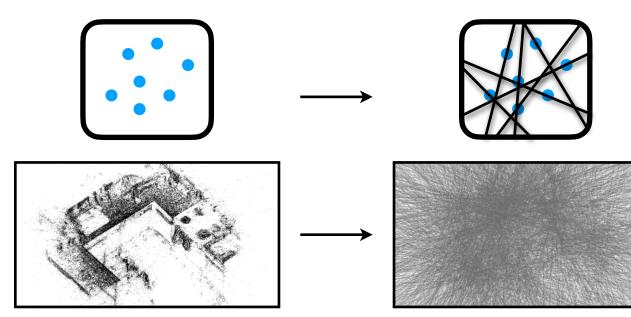


Dusmanu et al. Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings, CVPR 2021

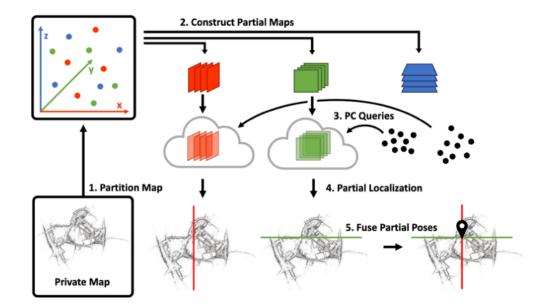


Ng et al. NinjaDesc, CVPR 2022

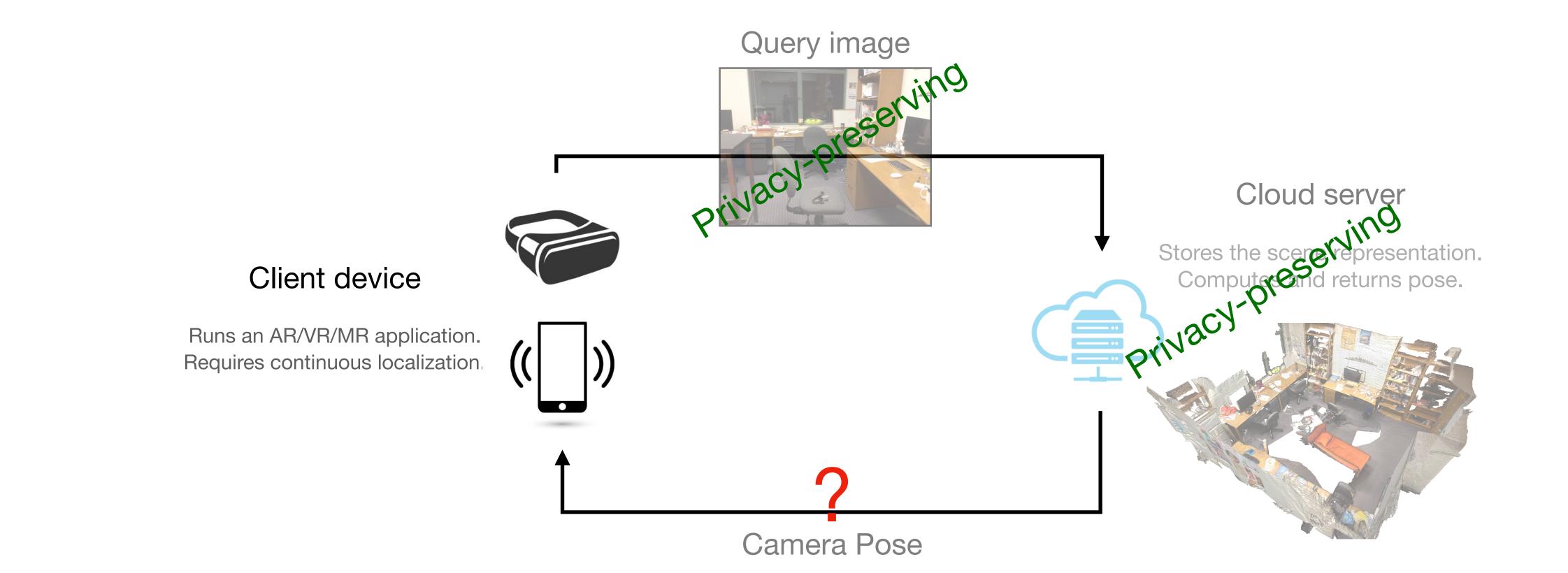
Privacy-preserving representations



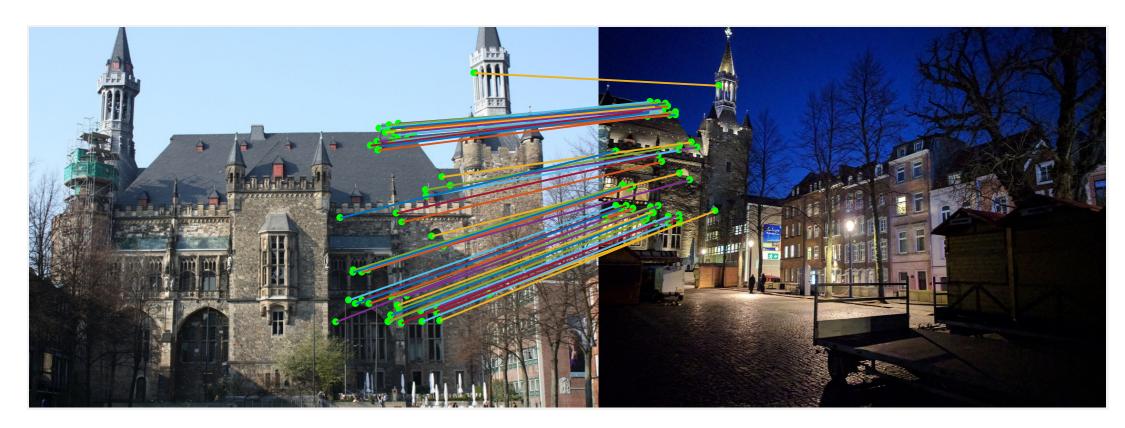
Speciale et al. Privacy Preserving Image-Based Localization, CVPR 2019



Geppert et al. Privacy Preserving Partial Localization, CVPR 2022

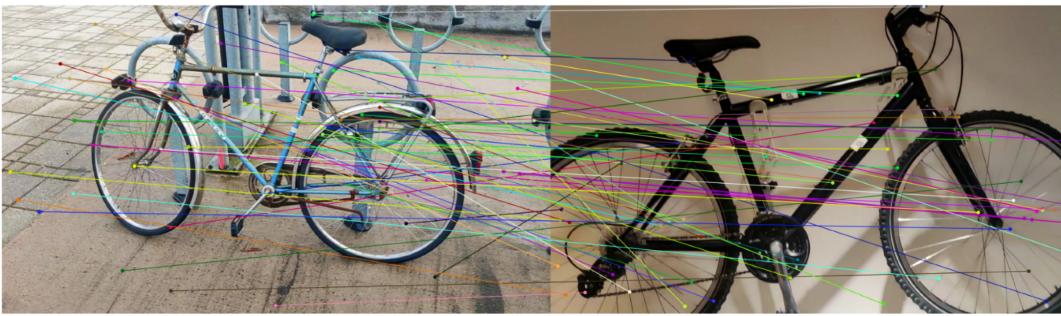


Can camera poses leak private information?



Example from "D2-Net-A Trainable CNN for Joint Detection and Description of Local Features" Dusmanu et al. CVPR 2019

Enough matches to localize images of different object instances across different scenes!



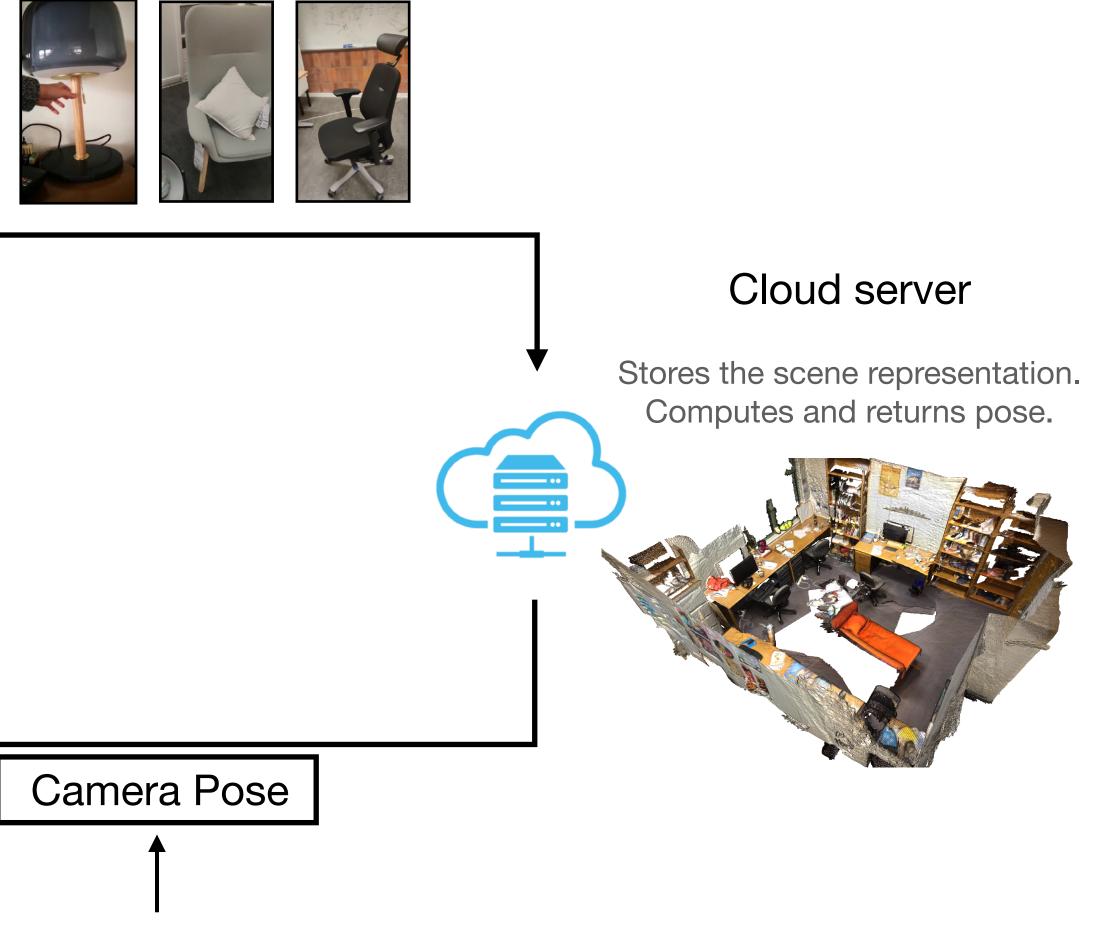
Matches between 2 very different bicycles in different scenes.

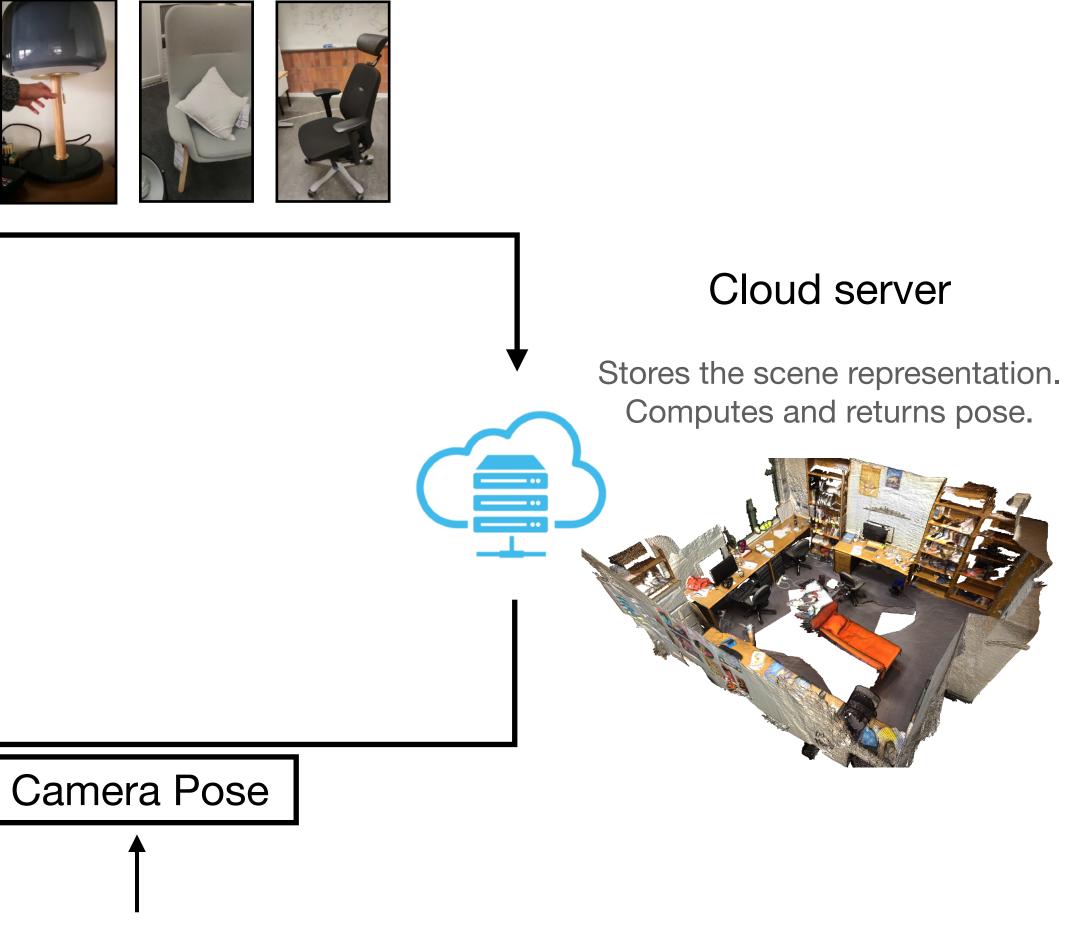
Motivation

Modern localization pipelines designed to maximise robustness!

Matches between different bookshelves in two different scenes.

Query image



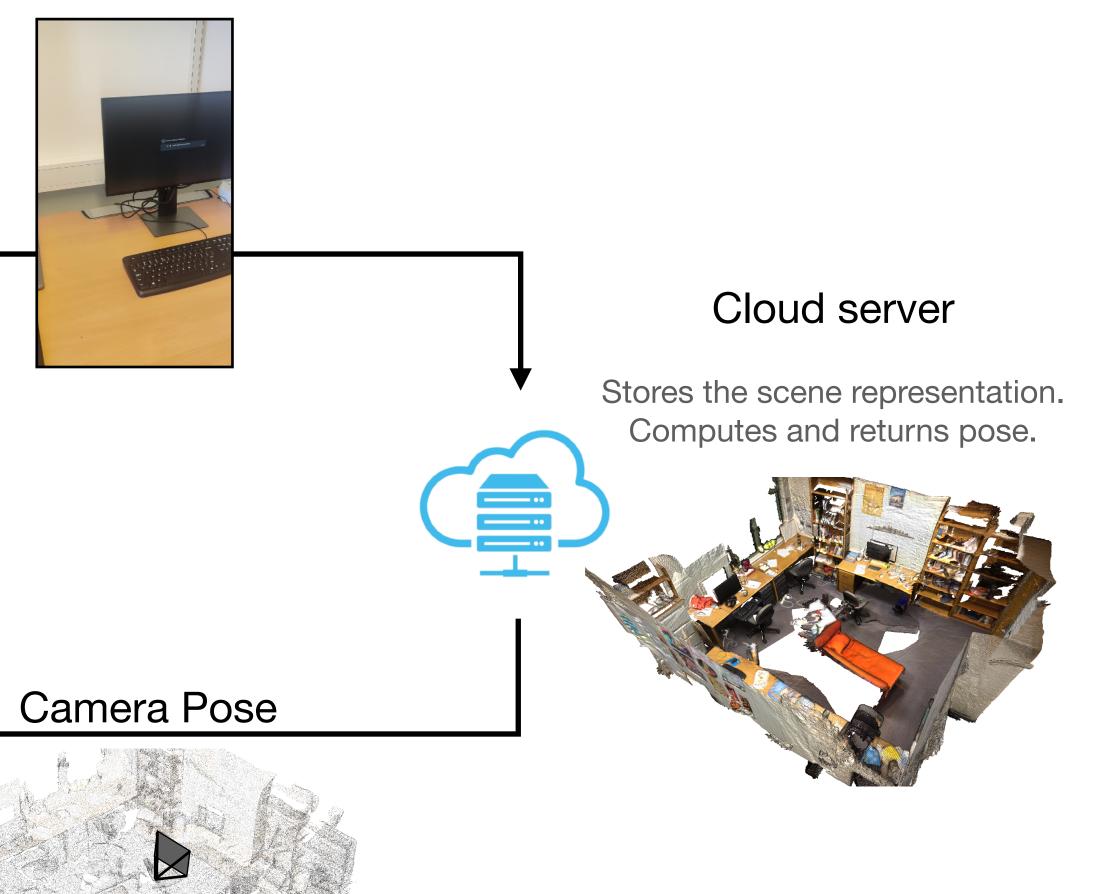


Just by using these, the attacker can infer approximate scene layout!

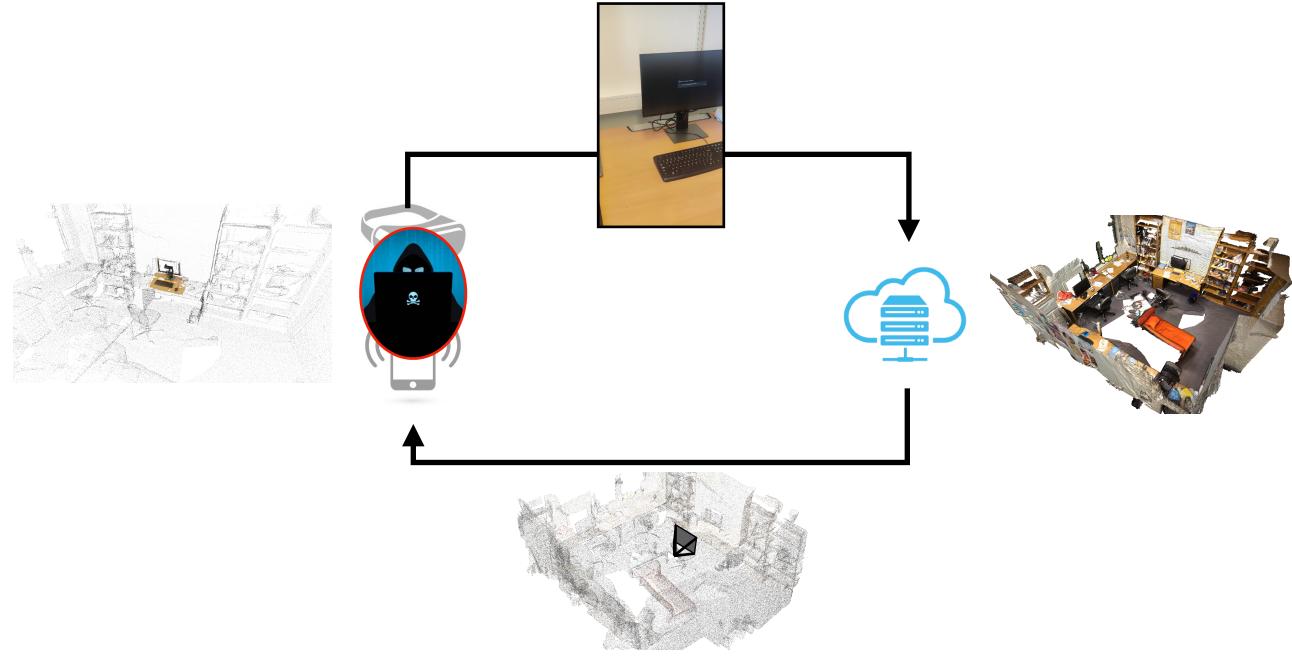
Outline

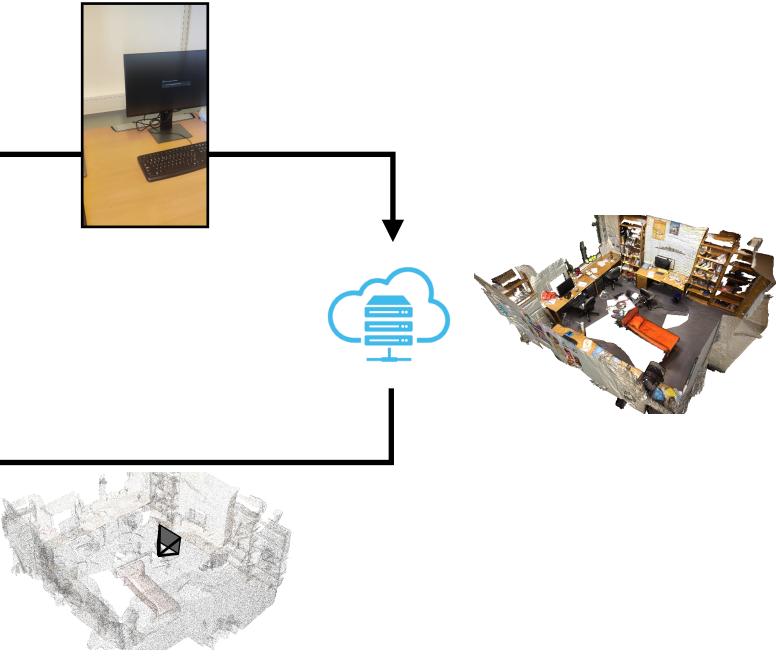
Simplest attack

Query image



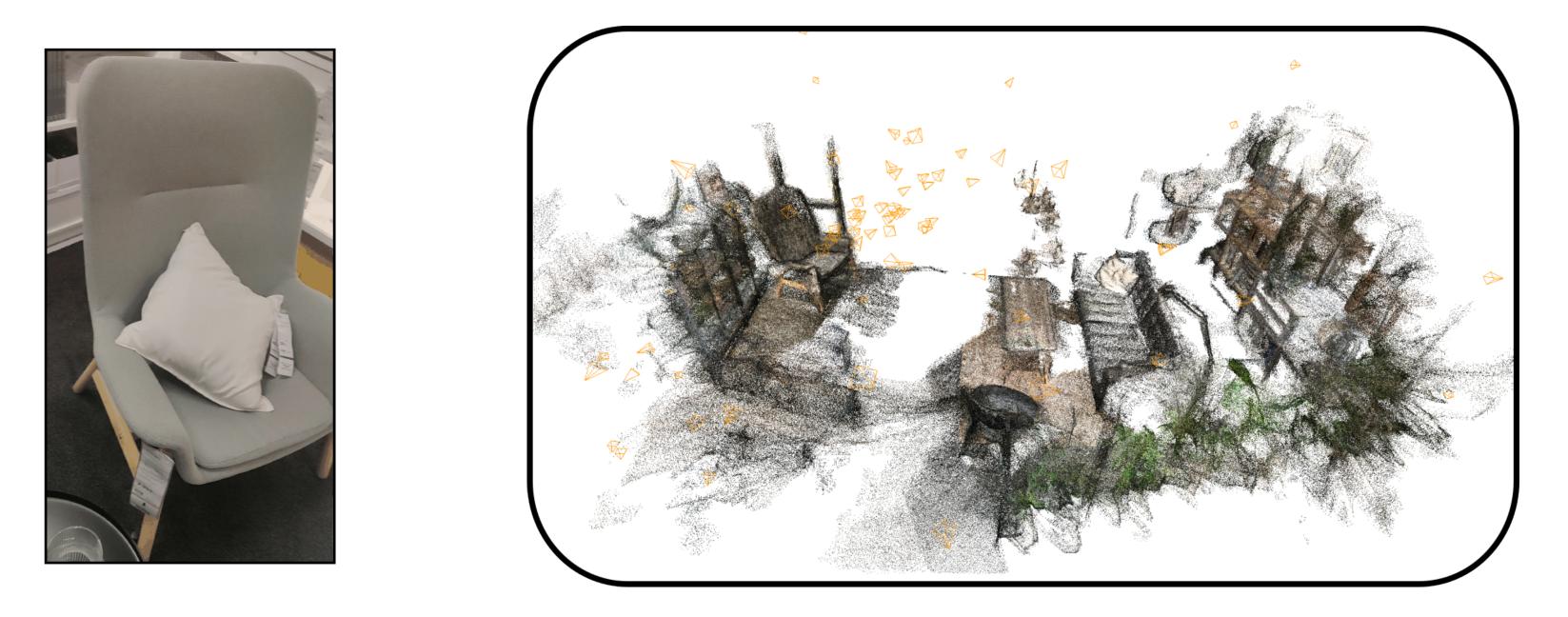
Simplest attack - Challenges





- 1. Every image gets a pose cannot decide which object is present and which isn't.
 - 2. Returned pose can be quite noisy (far from object) incorrect positioning.

Using multi-view images

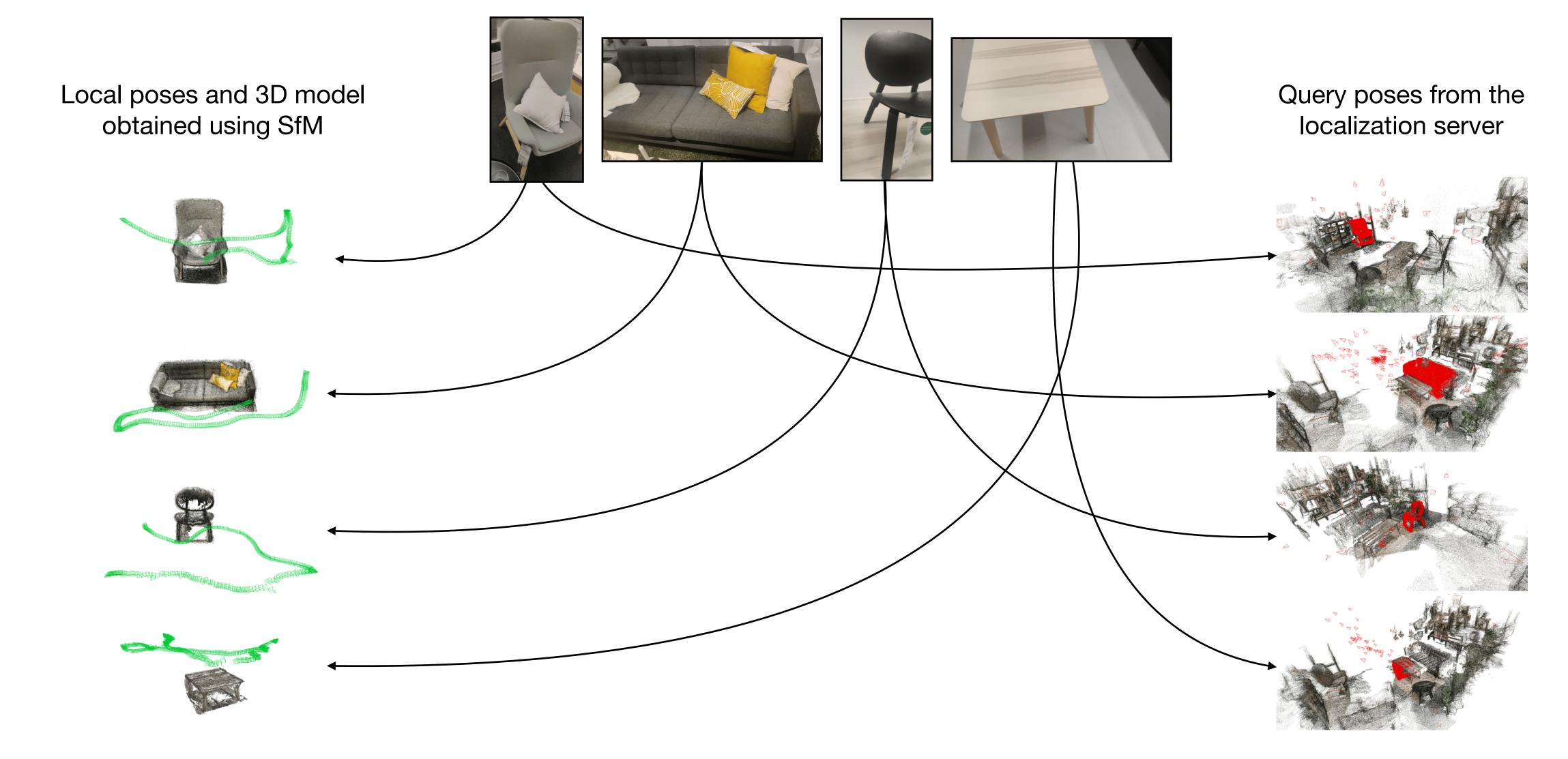


Suggestion : Use information from multiple images of each object taken from different view points

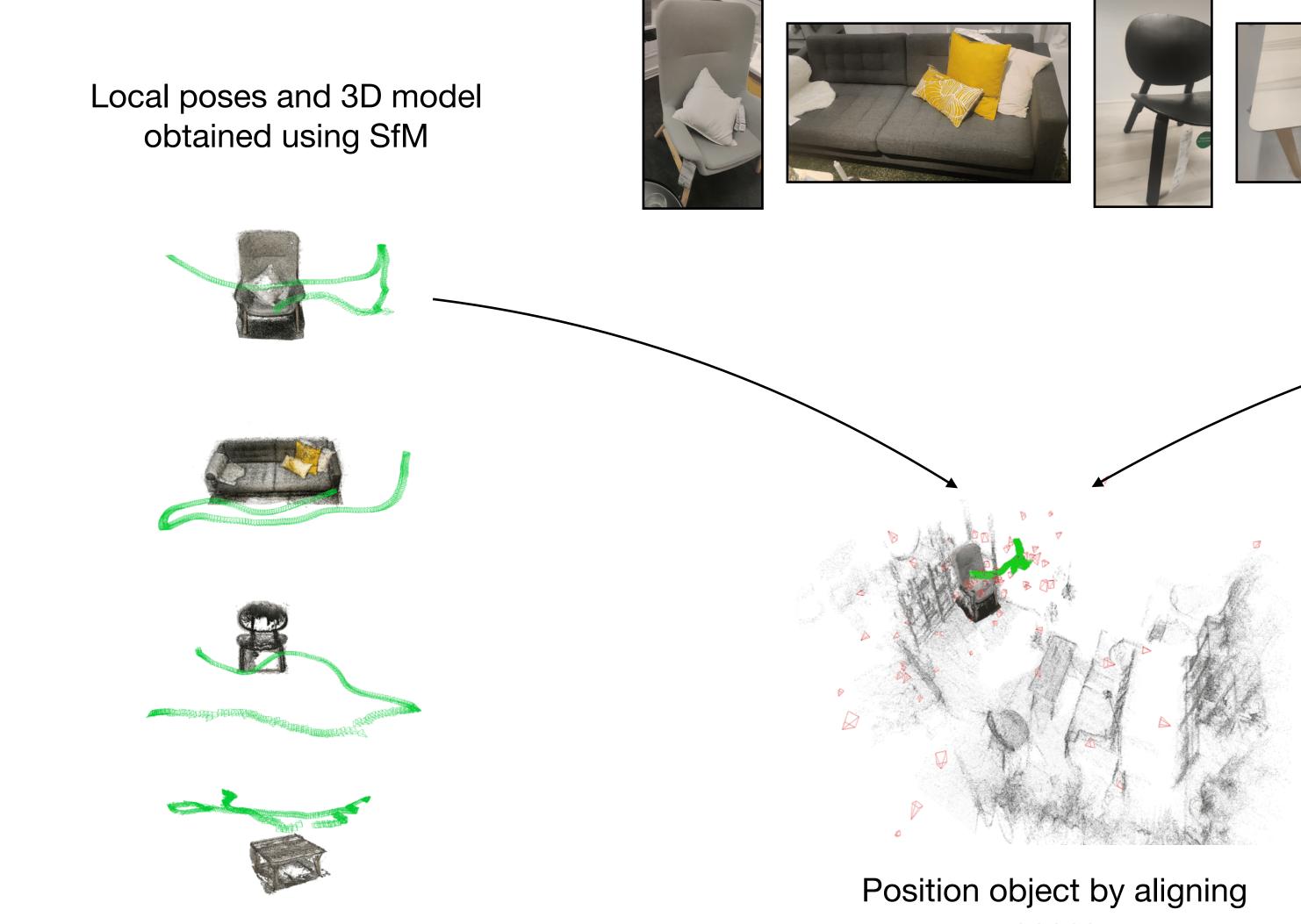
1. Some of the viewpoints would align well with the scene - allow correctly positioning - Challenge 2.

2. Distribution of the obtained poses can allow to decide if the object is present or not - Challenge 1.

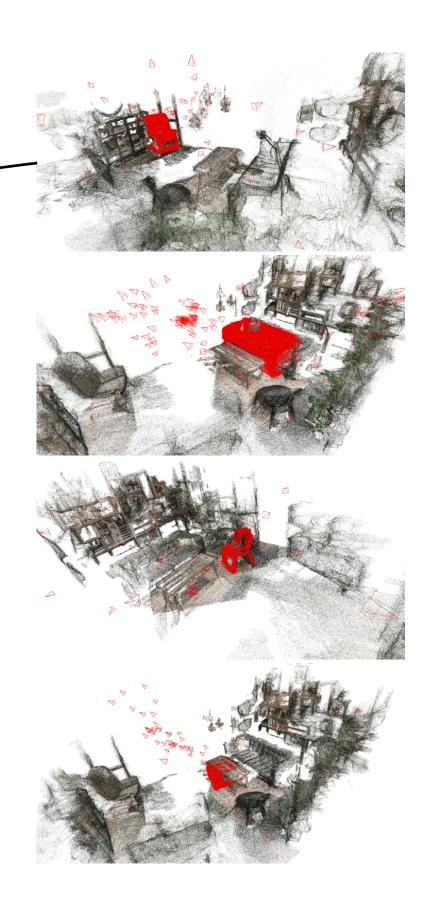
Attack pipeline



Attack pipeline



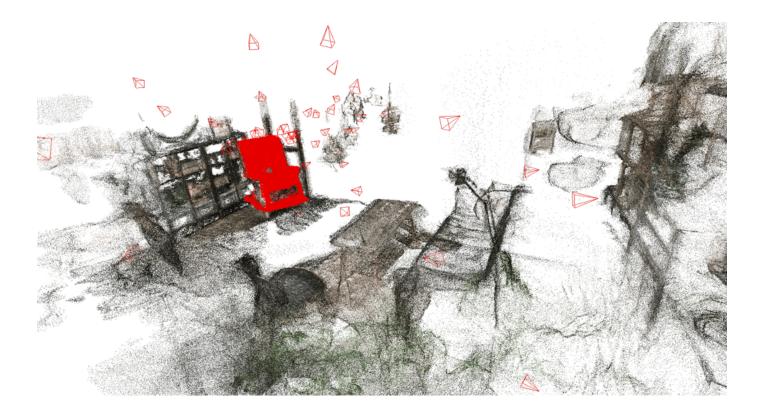
Query poses from the localization server



poses

OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Local poses and 3D model obtained using SfM



Poses from querying the localization server

Algorithm 1 Best			
sets of poses			
Input $\mathbf{P}_o = \{ [\mathbf{F}_o] \}$			
Output $\mathbf{R}_{best}, \mathbf{t}_{best}$			
1:]	procedure Get-		
2:	$\mathtt{N} \leftarrow \mathbf{P}_o $		
3:	Inliers_b		
4:	for i = 1		
5:	$\mathbf{R}_{est} \leftarrow$		
6:	$\mathbf{t}_{est} \leftarrow \mathbf{I}$		
7:	Inlier		
8:	for j =		
9:	$\Delta_r \leftarrow$		
10:	$\Delta_t \leftarrow$		
11:	$\mathbf{if}\Delta_r$		
12:	I		
13:	if Inli		
14:	Inli		
15:	$\epsilon \leftarrow \text{Inlie}$		
16:	$\mathbf{R}_{best}, \mathbf{t}_{best}$		

Robust pose set alignment

single camera based alignment between

$$\mathbf{R}_i | \mathbf{t}_i] \}, \mathbf{\hat{P}}_o = \{ [\mathbf{\hat{R}}_i | \mathbf{\hat{t}}_i] \}, \delta_r, \delta_t \}$$

-BEST-ALIGNMENT

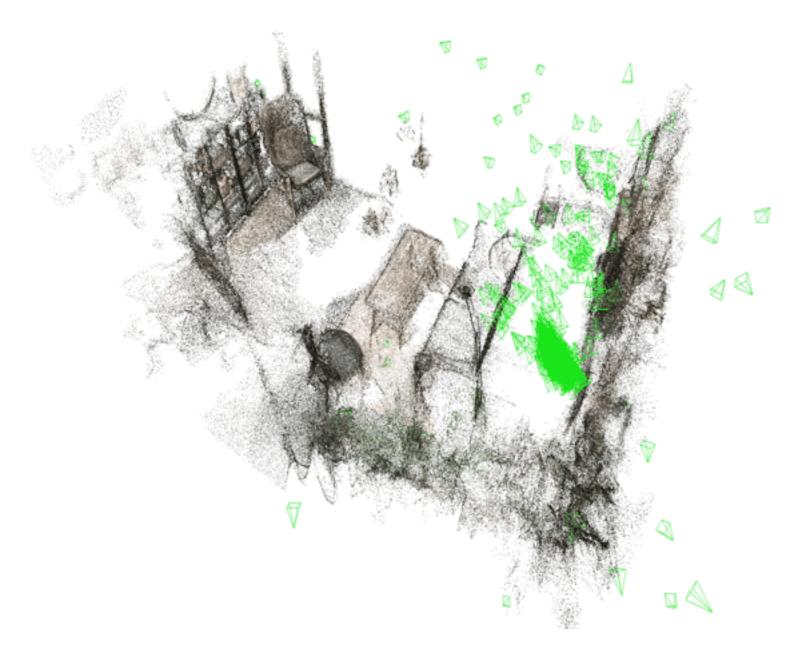
 $\mathsf{pest} \leftarrow \phi$ to Ndo $\mathbf{\hat{R}}_{i}^{ op}\mathbf{R}_{i}$ $\mathbf{\hat{R}}_{i}^{ op}(\mathbf{t}_{i}-\mathbf{\hat{t}}_{i})$ $s \leftarrow \phi$ 1 to N **do** $- \angle (\mathbf{R}_j \mathbf{R}_{est}^{ op} \hat{\mathbf{R}}_j^{ op})$ $-\left|\left|\mathbf{\hat{R}}_{j}^{ op}\mathbf{\hat{t}}_{j}-\mathbf{R}_{est}\mathbf{R}_{j}^{ op}\mathbf{t}_{j}+\mathbf{t}_{est}
ight)
ight|
ight|$ $< \delta_r$ and $\Delta_t < \delta_t$ then $nliers \leftarrow Inliers \cup \{j\}$ lers > |Inliers_best | then iers_best ← Inliers ers_best|/N $\mathbf{R}_{best}, \mathbf{t}_{best} \leftarrow Average(Inliers_best)$

For each corresponding camera, compute the relative motion and use that to transform all other cameras.

Check how well other cameras agree with this by counting inliers within some thresholds.

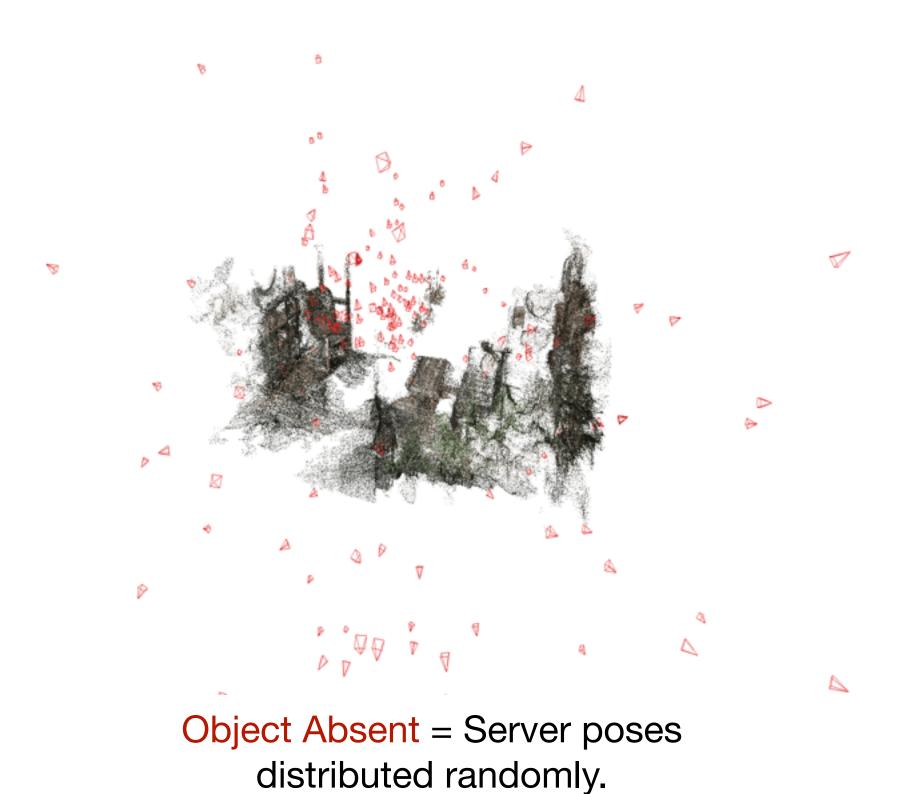
Average over the best set of inliers.

Decide Object Presence



Object present = Server Poses relatively consistent

Use inlier ratio from the pose-alignment algorithm as a proxy for how random the poses are. Low inlier ratio = high randomness.



Server maps

IKEA-Scenes

Sequences form 7 inspiration rooms taken at an IKEA store



Results - Datasets

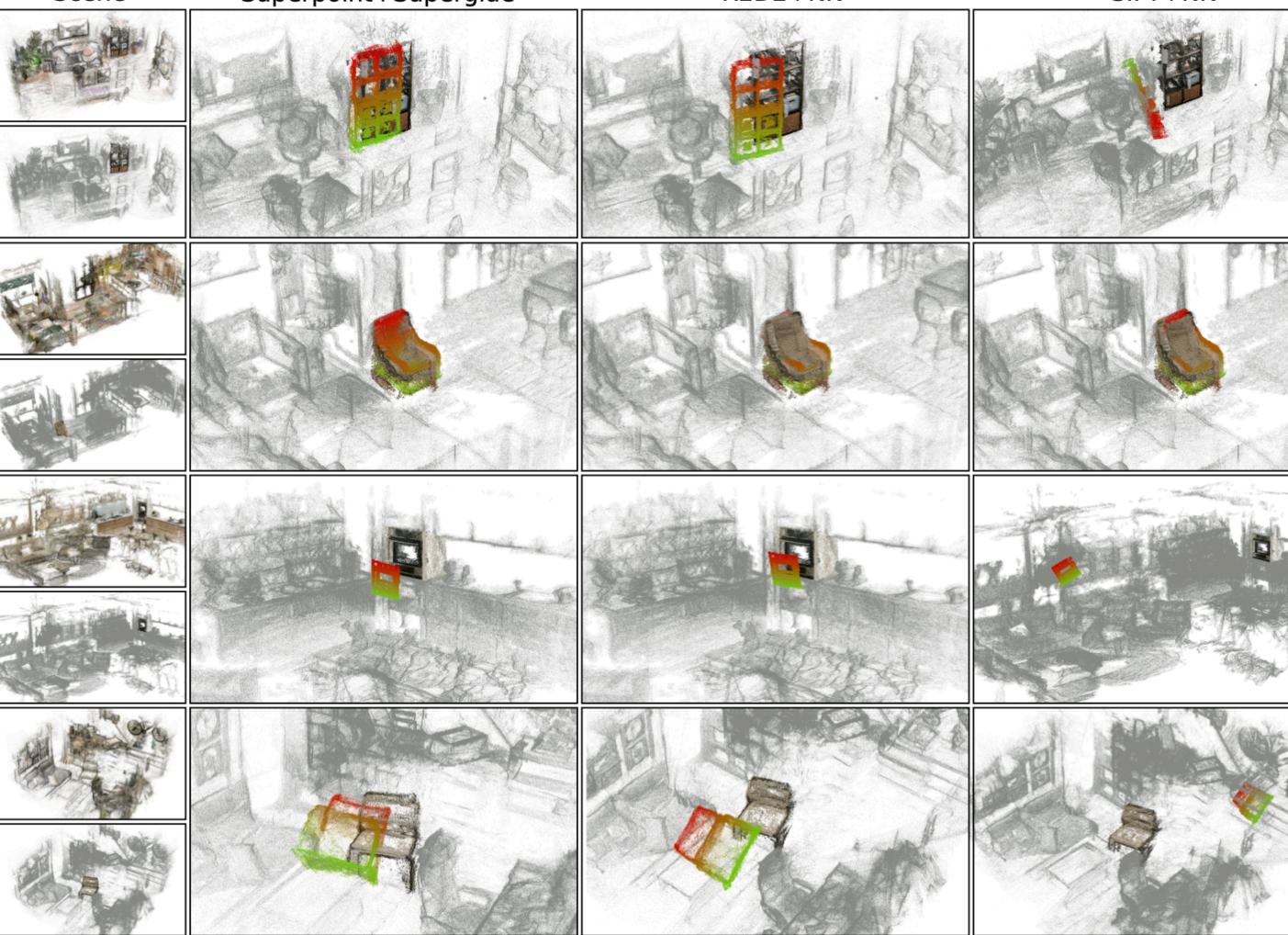
Attack queries

IKEA-Objects

Sequences of similar objects as in IKEA Scenes in a different part of the store

Results - Different local features

Scene



Localization server - Hloc¹ ullet

• Comparison over following features:

1.Superpoint² + Superglue³

2.R2D2⁴ + Nearest Neighbor

3.SIFT⁵ + Nearest Neighbor

1. "From Coarse to Fine: Robust Hierarchical Localization at Large Scale" Sarlin et al. CVPR 2019

2. "SuperPoint: Self-Supervised Interest Point Detection and Description" DeTone et al. DLV4SLAM 2018 (CVPR workshop)

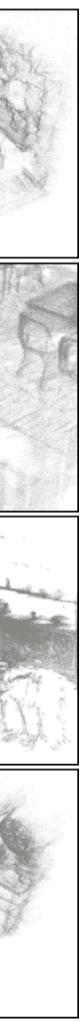
3. "SuperGlue:Learning Feature Matching with Graph Neural Networks" Sarlin et al. CVPR 2020

4. "R2D2:Repeatable and Reliable Detector and Descriptor" Revaud et al. NeurIPS 2019 5. "Distinctive Image Features from Scale-Invariant Keypoints" Lowe et al. IJCV 2004

Superpoint+Superglue

R2D2+NN

SIFT+NN

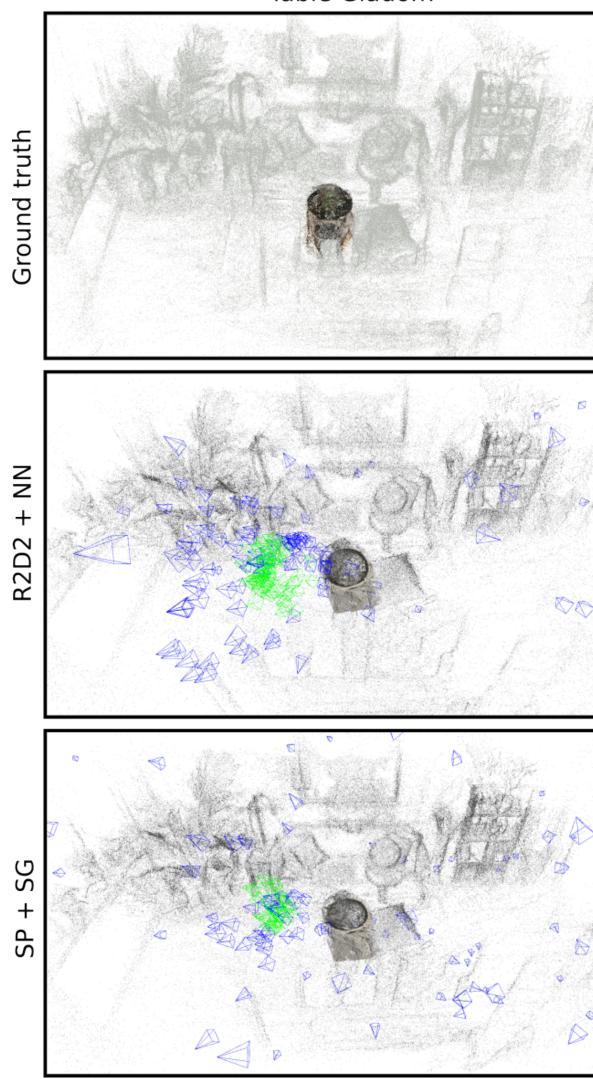


Results - Qualitative alignment

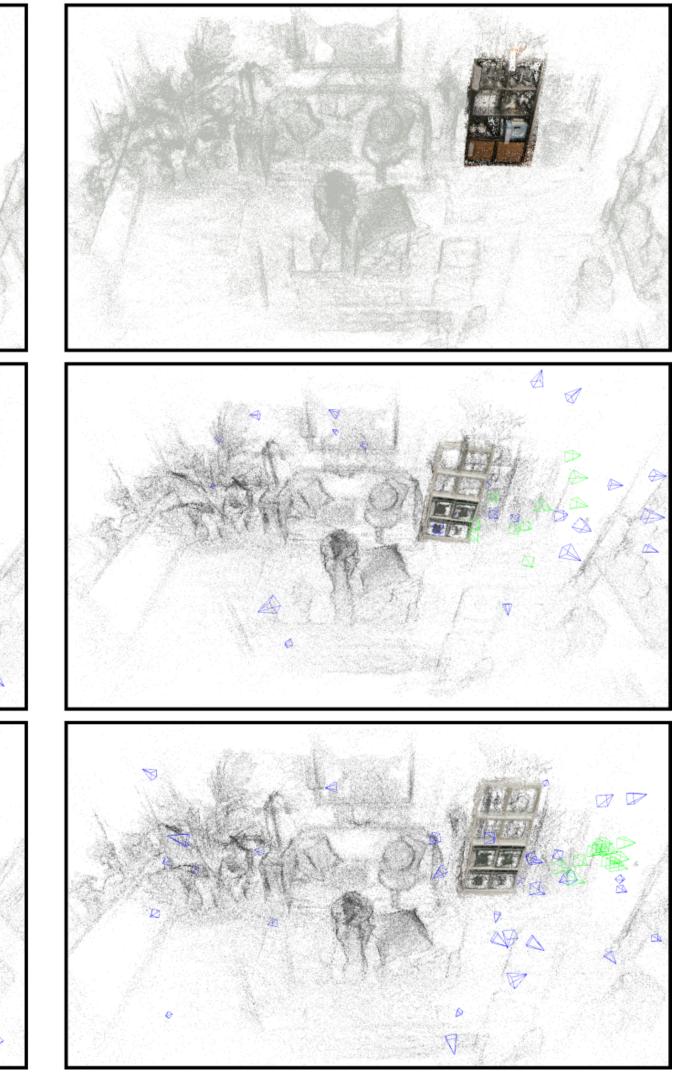
Table Gladom

Actual object in scene

Attack object



Cupboard Kallax

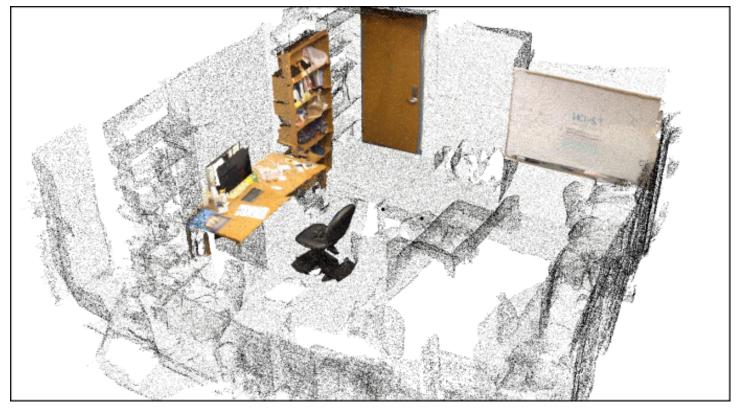


Actual object in scene

Attack object

Server maps

ScanNet¹-Office An office scene from the ScanNet dataset



Results - Datasets

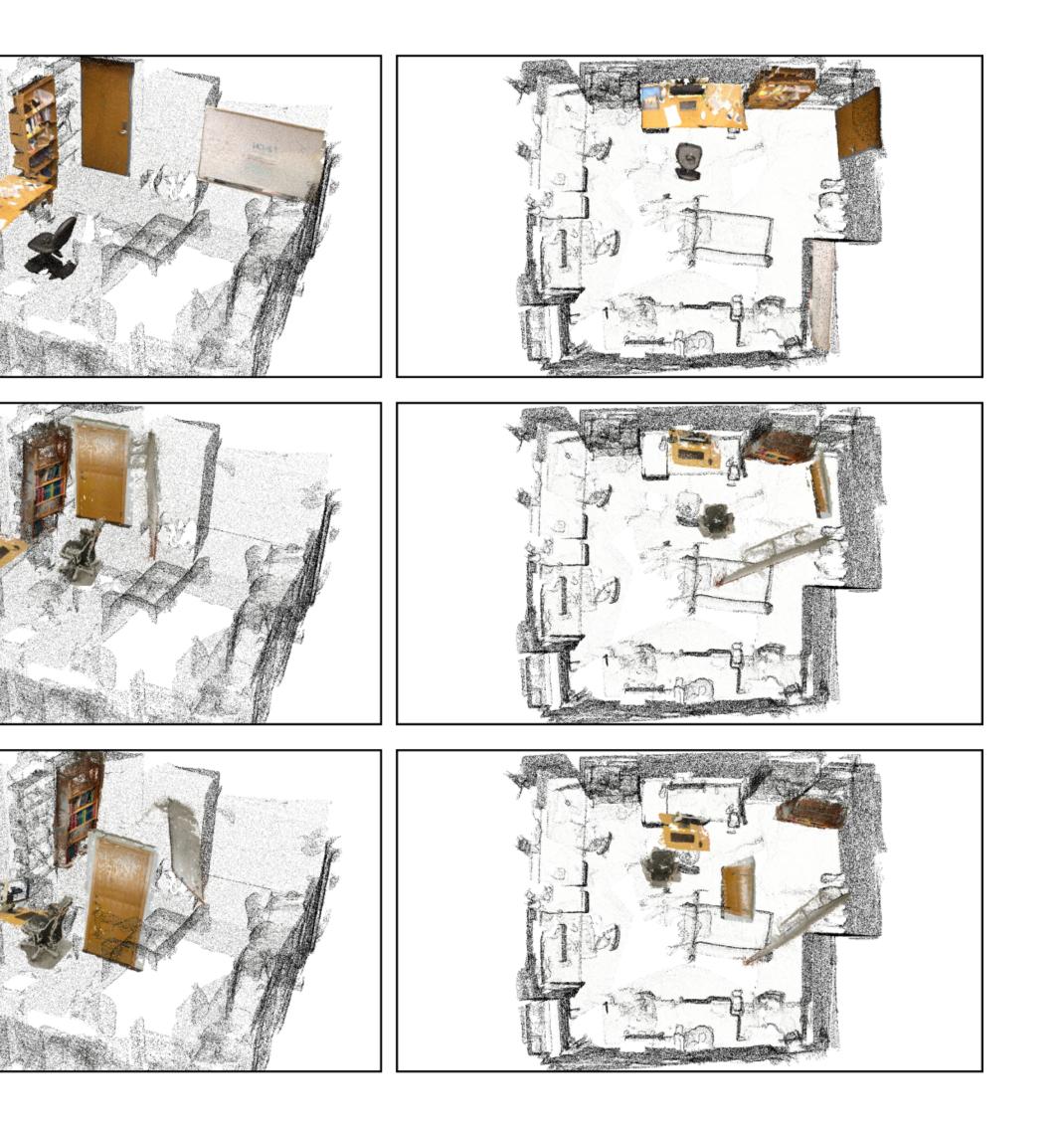
Attack queries

Office-Objects Image sequences of office objects at our office

Results - Qualitative alignment

Database Query Bookshelf Ground truth Desk +SG SP Door - 1 Aligned Chair NN + R2D2 Б Aligned

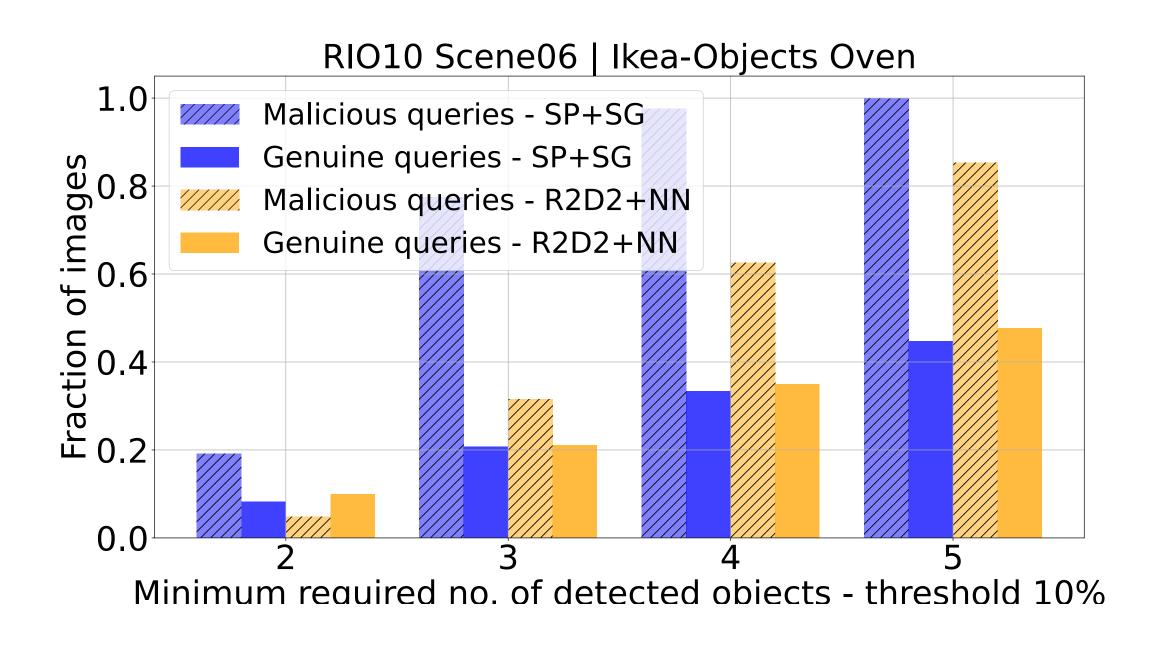
Whiteboa



Results - Deciding object presence

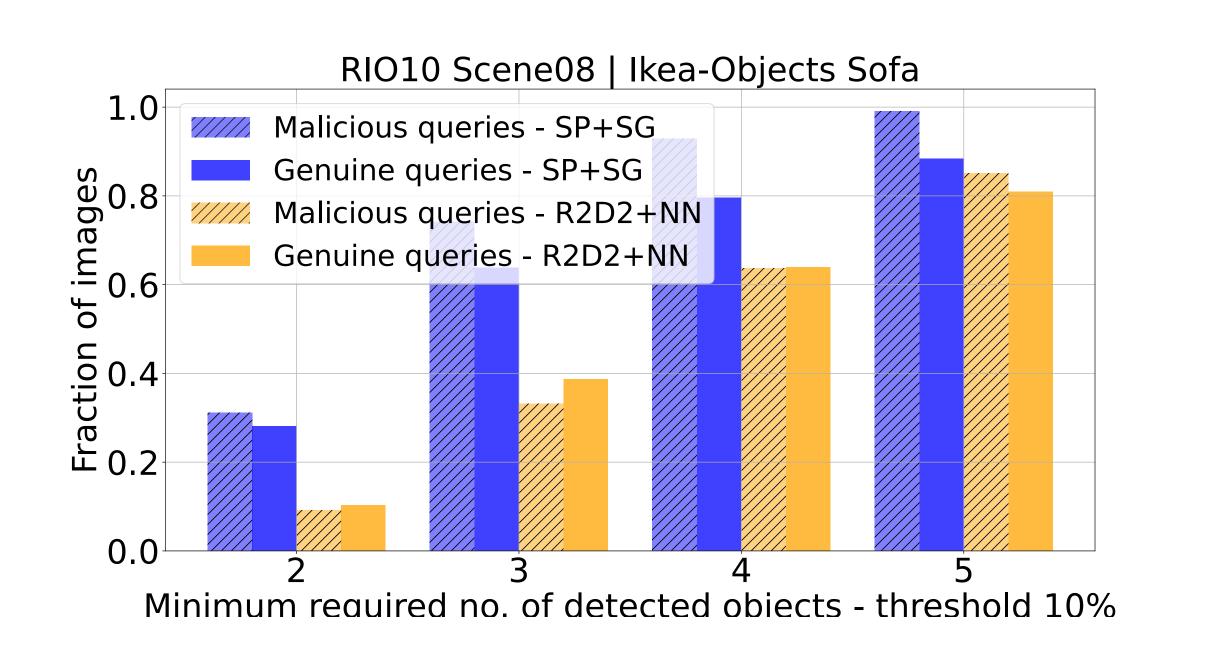
The decision method is not perfect - the task is difficult, however the underlying motivation is definitely holds.

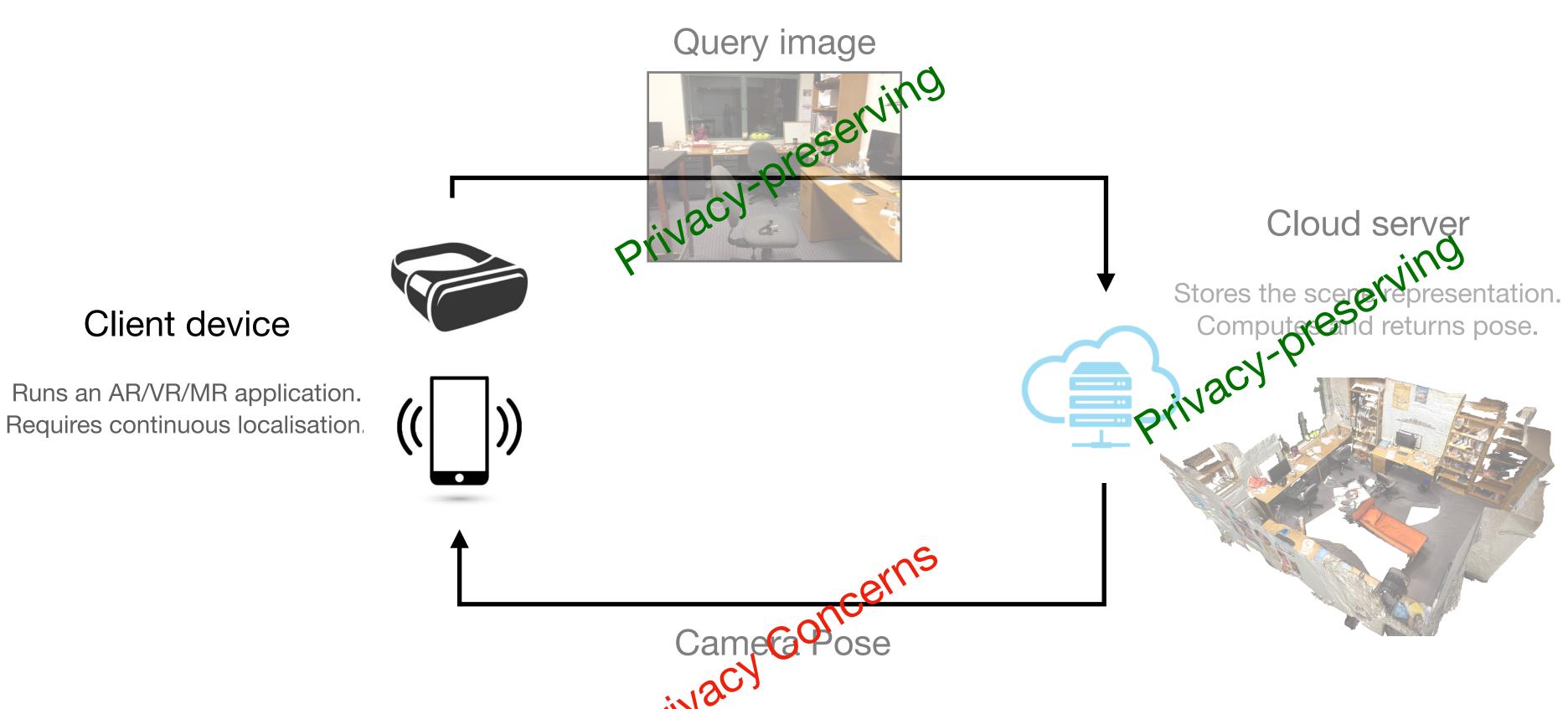
Scene	Objects present (recall)	Objects absent
IKEA Scene01	4/7	28/31
IKEA Scene02	4/10	21/28
IKEA Scene03	5/7	23/31
IKEA Scene04	3/5	28/33
IKEA Scene05	3/5	29/33
IKEA Scene06	2/5	27/33
IKEA Scene07	3/6	30/32

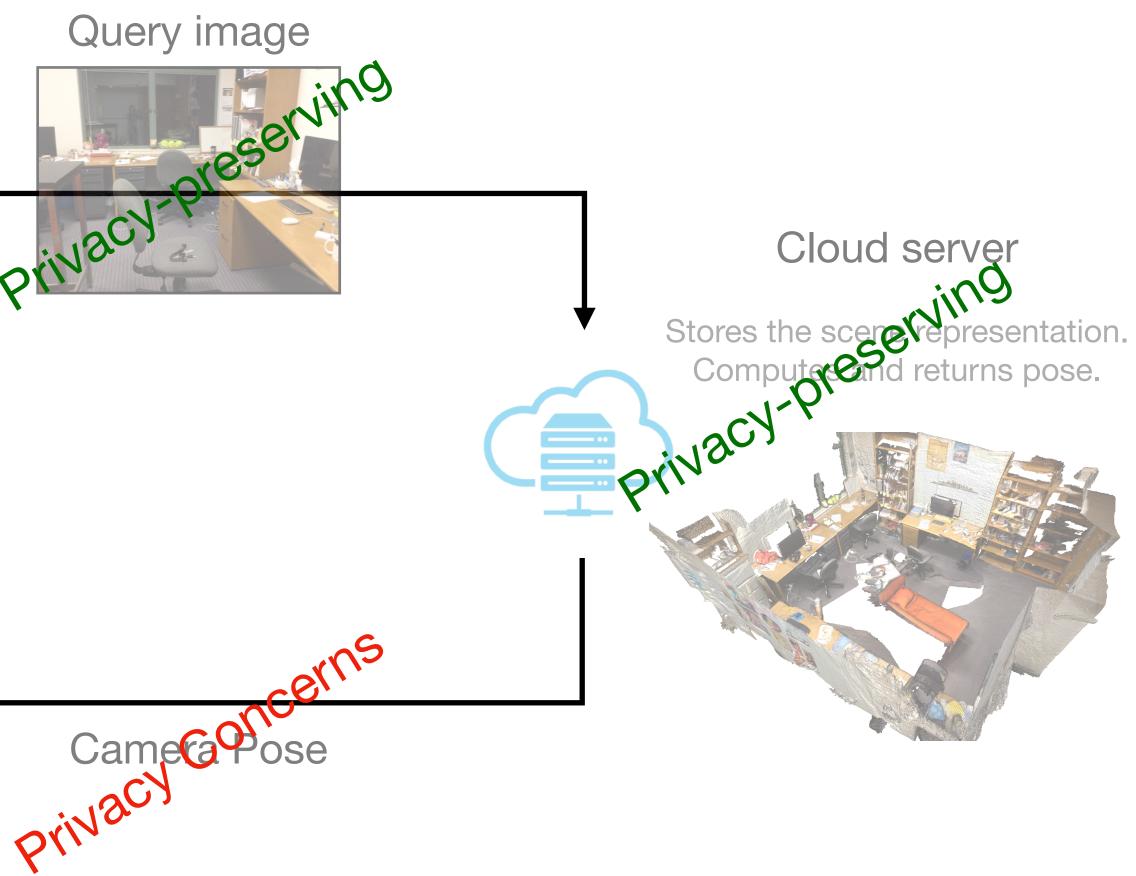


Discussion

- Possible defence Deny localization if 3D point inliers are predominantly from the same object.
 - Results in denying several genuine queries as well.







Conclusion

1. A novel privacy-attack via camera poses in a client-server based localization-setup is presented.

Conclusion

1. A novel privacy-attack via camera poses in a client-server based localization-setup is presented.

2. A proof-of-concept attack pipeline is implemented to show the feasibility of the attack and 3 different local features are weighed on the scale of susceptibility to such an attack.

3. It is shown that it might not be trivial to develop a defence without affecting the robustness and reliability of the localization service.

4. More research in the direction of privacy-preserving localization is definitely needed.

