DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering

Zongrui Li¹, Qian Zheng^{2,3}, Boxin Shi^{4,5}, Gang Pan^{2,3}, Xudong Jiang¹

¹School of Electrical and Electronic Engineering, Nanyang Technological University
²The State Key Lab of Brain-Machine Intelligence, Zhejiang University
³College of Computer Science and Technology, Zhejiang University
⁴National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
⁵National Engineering Research Center of Visual Technology, School of Computer Science, Peking University,

Overview

Overview

Relighting with realistic appearance given any light directions.

Motivation

[SCPS-NIR] Li et al. "Self-calibrating photometric stereo by neural inverse rendering". In Proc. European Conference on Computer Vision (ECCV), 2022.

Motivation

X Explicit Shadow Handling

Threshold

Observed Images

Pre-computed Shadow

- Shadow maps are **noisy**.
- Shadow maps cannot be updated.
- Cues conveyed in the shadow are not exploited.

X Anisotropic Reflectance Modeling

Reference Image

Relighting Image

٩J

• The isotropic reflectance model cannot fit well on the **anisotropic** reflectance.

Motivation

Why shadow matters?

Shadow reveals global shape-light

information (cues) that helps solve UPS.

Why reflectance matters?

Accurate reflectance model helps derive accurate surface normal.

Method – Differentiable Shadow Handling

Goals

Update the shadow map iteratively.
Exploit shadow cues for shape-light optimization.

Challenges

- Shadow is calculated on depth map differentiably.
- The computational cost will increase.
- Depth to normal is necessary for inverse rendering.

Method – Anisotropic Reflectance Modeling

- n_i : surface normal
- l_j : light direction
- h_i : half-vector
- ρ_{ij}^{s} : anisotropic specular reflectance
- r_k^{χ} , r_k^{γ} : anisotropic lobe's roughness
- c^k : anisotropic bases weights

Method – Neural Inverse Rendering

Method – Optimizing DANI-Net

Results Comparison

Results Comparison

DANI-Net

SCPS-NIR

Ablation Study on Shadow Map

[LL22] Junxuan Li and Hongdong Li. Neural reflectance for shape recovery with shadow handling. In Proc. Computer Vision and Pattern Recognition (CVPR), 2022.

Ablation Study on Anisotropic Reflectance Modeling

Conclusion

DANI-Net

Unsupervised Uncalibrated Photometric Stereo.

Differentiable Shadow Handling.

Anisotropic Reflectance Modeling.

Neural Inverse Rendering.

Realistic Rendering, Relighting.