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Summary

We propose a novel framework for WSI analysis, which leverages a
heterogeneous graph to learn the inter-relationships among different
types of nodes and edges.
We propose a graph aggregation algorithm which incorporate node
and edge attributes in a heterogeneous graph, together with a
pseudo-label pooling algorithm.
We adopt a localization method based on Granger causality which
shown improved performance.

Figure: The workflow of our proposed frameworkHEAT Jun 2023 3 / 35
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Digital Histopathology

In digital pathology, whole-slide scanners are used to digitize glass
slides containing tissue specimens into whole-slide images (WSI) at
high resolution (up to 160nm per pixel).

It’s time-consuming and tedious for pathologists to manually inspect
a WSI due to the huge size (e.g., the usual size is 60,000 × 60,000)
and complex patterns.

Machine learning solutions are introduced to reduce the workload on
pathologists.

Recently the emergence of graph learning provides powerful solutions
to WSI analysis.
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Preliminary Definition

Heterogeneous Graph: A heterogeneous graph is defined by a graph
G = (V, E ,A,R), where V, E ,A represent the set of entities (vertices
or nodes), relations (edges), and entity types, respectively. And R
represents the space of edge attributes. For v ∈ V, v is mapped to an
entity type by a function τ(v) ∈ A. An edge e = (s, r , t) ∈ E links
the source node s and the target node t, and r is mapped to an edge
attribute by a function ϕ(e) = r ∈ R. Every node v has a
d-dimensional node feature x ∈ X , where X is the embedding space
of node features.

Granger Causality Granger [1969], Lin et al. [2021]: Let I be all the
available information and I−X be the information excluding variable
X . If we can make a better prediction of Y using I than using I−X ,
we conclude that X Granger-causes Y .

HEAT Jun 2023 7 / 35



Problem — WSI Classification

WSI Classification: Given a WSI X and a heterogeneous graph G
constructed from X , we wish to predict the label y with a GNN modelM.
We also aim to assign an importance score f (v) to each node v ∈ V in G
as the causal contribution of each patch to the prediction for localization.
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Contributions

We propose a novel framework for WSI analysis, which leverages a
heterogeneous graph to learn the inter-relationships among different
types of nodes and edges.

The heterogeneous graph introduces a “nucleus-type” attribute to
each node, which can serve as an effective data structure for
modeling the structural interactions among the nuclei in the WSI.

To tackle the aggregation process in the heterogeneous graph, we
propose a novel heterogeneous-graph edge attribute transformer
(HEAT) architecture which can take advantage of the edge and node
heterogeneity. Thus, the diverse structural relations among different
biological entities in the WSI can be incorporated to guide the GNN
for more accurate prediction.

HEAT Jun 2023 9 / 35



Contributions

Further, to obtain the graph-level representations for slide-level
prediction, we propose a semantic-consistent pooling mechanism —
pseudo-label (PL) pooling, which pools node features to graph level
based on clusters with a fixed definition (i.e., nucleus type). The
proposed PL pooling can regularize the graph pooling process by
distilling the context knowledge (i.e., pathological knowledge) from a
pretrained model to alleviate the over-parameterization issue [Balaji
et al., 2020].

Additionally, we propose a Granger causality [Granger, 1969] based
localization method to identify the potential regions of interest with
clinical relevance to provide more insights to pathologists and
promote the clinical usability of our approach.
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The Framework

Figure: The workflow of our proposed framework
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Instance Selections

Three procedures were used to generate the heterogeneous graphs i.e.,
Otsu’s thresholding method [Otsu, 1979] to automatically segment the
nuclei from input histopathology images.

Input WSI data Segmented mask Extracted patches
Predicted node
types
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Instance Selections

Patch extraction

Given the segmented masks from Otsu’s thresholding [Otsu, 1979]
with a magnification factor of 20, it generates a patch-level image
with a patch size of 256x256.

Output: uniform patch-level image with its corresponding patch
coordinates.

Node type prediction

Node prediction: use HoverNet’s nuclei classifier [Graham et al.,
2019] (pretrained using PanNuke dataset).

Node type assignment per patch: use majority vote operation to find
the most frequent node type in a patch.

HEAT Jun 2023 14 / 35



Instance Selections

Figure: A WSI with selected patches and predicted node types
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Model WSI with Heterogeneous Graph

Node construction: each patch is a node with node types predicted by
Hovernet.

Edge construction: use Pearson R to determine the correlation
between the feature vectors of the nodes.

We then have a heterogeneous graph G = (V, E ,A,R) to model the
WSI image in a graphical manner.

We design a novel architecture to propagate information on G and
predict image-level label ŷ .
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Meta-Relations in a WSI

Neoplastic

Normal
Neoplastic

Dead

Normal
Inflammatory

Normal

Inflammatory

Neoplastic

Dead

Inflammatory

Neoplastic

Figure: Examples of meta-relations in a heterogeneous graph constructed from a
WSI.

HEAT Jun 2023 17 / 35



The HEAT Algorithm

We propose a heterogeneous edge attribute transformer (HEAT) layer to
incorporate the continuous edge features in a heterogeneous graph.

Algorithm The HEAT algorithm.

Input:

Heterogeneous graph Gl−1 with node features {H(l−1)
i ,∀i ∈ V} and

edge attribute {h(l−1)
e ,∀e ∈ E};

Node-type specific projection layers {W i
a , ∀a ∈ A}

Edge attribute transformation layer Wedge.

Output: The updated graph Gl with node features {H(l)
i ,∀i ∈ V}, and

the edge features {h(l)e , ∀e ∈ E}
1: Initialize projection layers for each node type
2: for e = (s, t) ∈ E do

3: hi
key = W i

τ(s)H
(l−1)
s ▷ Project the source node

4: hi
value = W i

τ(s)H
(l−1)
s ▷ Compute value vector

5: hi
query = W i

τ(t)H
(l−1)
t ▷ Project the target node

6: h′e ←Wedge · h
(l−1)
e ▷ Project the edge attribute

7: ATT(e, i) =
(
hi
keyh

′
ehi

query

)
/
√
d

8: Attention(e) = softmax
∀s∈N(t)

(∥i∈[1,h]ATT(e, i))

9: h
(l)
e ← h′e ▷ Compute latent edge features

10: end for
11: for t ∈ V do
12: H

(l)
t = ⊕∀s∈N(t)(∥i∈[1,h]hi

value · Attention(e))
13: end for
14: return Gl
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Pooling by Pseudo Labels

We introduce a novel pooling method — PL Pool, to aggregate
information with respect to the pseudo-labels (i.e., node types) predicted
from a pretrained teacher network (e.g., HoverNet Graham et al. [2019]).

…

…

…

…

…

Pooled Features

1

Node Type

2

3

4

5

Figure: Mechanism of Pseudo-label Pool
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Model Training

The predicted label from the network is

ŷ = softmax(
L∑

l=1

readout(HEAT (Gl))),

where readout is an arbitrary pooling method (e.g., average pooling). We
adopt the cross-entropy loss to train the network and the objective is
defined as the loss function

L = − 1

N

N∑
i=1

K∑
j=1

yij log(ŷij),

where N is the number of samples, K is the number of the classes, and
y ∈ RN×K are the one-hot labels.
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Causal Interpretations

We make use of the Granger causality to outline causal regions in the WSI
with the causal graph explainer. The causal contribution of each node v is
given by [Lin et al., 2021]

∆v = L(y , ỹG)− L(y , ỹG\{v}),

where y is the true label and ỹG =M(G) and ỹG\{v} =M(G\{v}) are the
predicted labels from the GNNM with input graphs G and G\{v},
respectively. L(y , ŷ) is the cross-entropy loss between the ground-truth
label y and the predicted label ŷ .
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Datasets

Table: The distribution of classes in TCGA-COAD, TCGA-BRCA, and
Camelyon16 datasets.

Classification sets Tumor data Normal data

TCGA-COAD 1325 99
TCGA-BRCA 1365 347
Camelyon 16 160 239

Staging sets Stage I Stage II Stage III Stage IV

TCGA-COAD 267 561 397 209
TCGA-BRCA 276 967 368 37

Typing sets Type I Type II

TCGA-BRCA 190 30
TCGA-ESCA 89 65

HEAT Jun 2023 23 / 35



Comparable Methods

ABMIL [Ilse et al., 2018]: an MIL framework aggregating bag-level
instance information by attention mechanism.

DSMIL [Li et al., 2021]: a dual-stream multiple instance learning
method using max pooling and attention to aggregate the signals
from the individual patches.

GTNMIL [Zheng et al., 2022]: a graph-based MIL method based on
graph transformer network [Yun et al., 2019].

Patch GCN [Chen et al., 2021]: a hierarchical graph-based model on
survival data with patient-level and WSI-level aggregations. We adapt
this method as a GCN model with Global attention pooling [Li et al.,
2015].

H2-MIL [Hou et al., 2022]: a tree-graph-based multiple instance
learning that utilizes different magnification levels to represent
hierarchical features.
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Results — TCGA–COAD and TCGA–BRCA

Cancer Staging (Four Stages) Cancer Classification
Model AUC Accuracy Macro-F1 AUC Accuracy Macro-F1
ABMIL Ilse et al. [2018] 53.8 (3.7) 19.2 (7.8) 35.8 (4.4) 97.7 (2.3) 98.3 (0.9) 95.8 (2.2)
DSMIL Li et al. [2021] 59.3 (1.4) 35.7 (5.7) 37.9 (2.8) 99.7 (0.2) 98.6 (0.5) 96.9 (0.9)
ReMix Yang et al. [2022] 58.3 (1.5) 33.9 (7.8) 24.8 (7.5) 94.3 (3.4) 96.0 (4.6) 92.8 (5.9)
PatchGCN Chen et al. [2021] 62.5 (4.9) 38.2 (3.1) 38.5 (5.7) 91.1 (5.3) 97.1 (2.0) 98.8 (1.0)
GTNMIL Zheng et al. [2022] 54.2 (2.6) 29.3 (1.4) 24.3 (3.9) 97.3 (2.6) 98.1 (1.3) 95.9 (2.4)

T
C
G
A
–
C
O
A
D

H2-MIL Hou et al. [2022] 58.6 (2.7) 38.5 (5.4) 33.0 (5.0) 99.7 (0.4) 99.2 (0.5) 97.4 (1.7)
HEAT (Ours) 63.4 (2.5) 40.0 (2.1) 41.3 (2.7) 99.9 (0.2) 99.9 (0.3) 99.2 (0.4)

ABMIL Ilse et al. [2018] 54.7 (4.6) 19.0 (10.0) 23.9 (3.2) 97.3 (1.7) 98.3 (1.1) 97.3 (1.6)
DSMIL Li et al. [2021] 51.4 (4.7) 18.3 (14.9) 23.2 (2.3) 98.7 (0.5) 95.6 (1.4) 93.3 (2.0)
ReMix Yang et al. [2022] 58.8 (2.2) 35.6 (16.2) 27.6 (5.8) 96.1 (0.7) 95.8 (2.6) 93.0 (3.4)
PatchGCN Chen et al. [2021] 50.3 (0.2) 41.6 (0.5) 25.1 (0.3) 96.2 (1.7) 98.2 (0.8) 98.4 (0.8)
GTNMIL Zheng et al. [2022] 53.0 (3.7) 41.3 (4.4) 25.1 (2.3) 94.7 (1.0) 94.5 (0.2) 93.7 (1.7)

T
C
G
A
–
B
R
C
A

H2-MIL Hou et al. [2022] 52.1 (7.2) 53.7 (2.6) 21.2 (2.5) 97.9 (2.7) 98.0 (1.5) 97.6 (2.2)
HEAT (ours) 61.9 (3.8) 55.8 (6.4) 27.7 (16.3) 98.8 (0.7) 98.3 (0.5) 99.5 (0.7)

Table: Cancer staging and classification results [%] of various methods on
TCGA–COAD and TCGA–BRCA datasets.
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Results — TCGA–ESCA

Model AUC Accuracy Macro-F1
ABMIL Ilse et al. [2018] 79.5 (7.5) 80.3 (8.4) 81.3 (7.4)
DSMIL Li et al. [2021] 92.5 (1.7) 87.3 (2.0) 86.3 (2.0)
ReMix Yang et al. [2022] 92.5 (7.2) 90.0 (8.1) 90.3 (7.7)
PatchGCN Chen et al. [2021] 88.6 (3.5) 92.1 (2.3) 92.3 (2.4)
GTNMIL Yun et al. [2019] 89.7 (4.7) 81.2 (4.8) 89.2 (4.9)
H2-MIL Hou et al. [2022] 92.1 (3.9) 88.2 (5.8) 88.0 (5.8)

HEAT (ours) 92.8 (2.5) 92.7 (2.2) 93.3 (1.9)

Table: Cancer typing results [%] of our method compared to various methods on
the TCGA–ESCA dataset.
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Results — Qualitative Evaluation

We modified the GNN Explainers to apply masks on nodes (instead of
features in the original paper) to calculate the contributions of each node.
We use GNN Explainer as the baseline method to interpret the important
regions to cancer prediction.

(a) Original WSI (b) GNN Explainer

(c) Causal Explainer

Figure: Original WSI (left) and explanation heatmap generated by GNN explainer
(middle) and our causal explanation method (right). Ground truth regions are
outlined with red boundaries. Lighter yellow indicates a higher importance score.
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Ablation — GNN Architectures

GNN Architecture AUC Accuracy Macro-F1
GCN Welling and Kipf [2016] 90.8 90.9 90.0
GAT Veličković et al. [2017] 85.8 86.4 88.9
GIN Xu et al. [2018] 91.6 90.9 83.3
HetRGCN Schlichtkrull et al. [2018] 82.5 83.3 88.9
HGT Hu et al. [2020] 87.8 87.5 83.3

HEAT (ours) 92.8 92.7 93.2

Table: Cancer typing results [%] of our method compared to various GNN
architectures on the TCGA–ESCA dataset.
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Ablations — Pooling Methods

We perform binary classification on the COAD dataset compared to
pooling methods.

Table: Cancer classification results on TCGA–COAD of our pooling method to
various comparable pooling methods using GCN and KimiaNet feature encoder.

Method Accuracy Macro-F1 AUC

Sum pooling 99.3 99.2 95.5

Max pooling 98.6 99.2 95.1

Mean pooling 95.8 100.0 97.7

Global attention pooling Li et al. [2015] 97.9 99.2 94.7

IH-Pool Hou et al. [2022] 97.2 88.1 99.3

ASAP Ranjan et al. [2020] 98.6 95.1 99.2

PL-Pool (Ours) 99.3 100.0 99.6
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