

MELTR: Meta Loss Transformer for Learning to Fine-Tune Video Foundation Models

Dohwan Ko^{1*}, Joonmyung Choi^{1*}, Hyeong Kyu Choi¹, Kyoung-Woon On², Byungseok Roh², Hyunwoo J. Kim¹

¹Department of Computer Science and Engineering, Korea University ²Kakao Brain

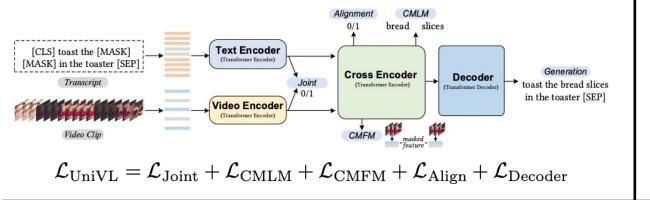
kakao brain

Poster Tag: THU-AM-344

Korea University

CVPR 2023

Motivation



Idea

- How can *automatically* combine various pretext task loss functions to assist learning of the target task?
- Use a meta-learning-based *auxiliary learning* framework.

MELTR significantly outperforms the baselines across **three backbone models** on **five datasets**.

 $\phi^* = \operatorname{argmin} \mathcal{L}^{\operatorname{pri}}(w^*(\phi)) \text{ s.t. } w^*(\phi) = \operatorname{argmin} \mathcal{L}^{\operatorname{aux}}(w,\phi)$

Task Embed

(TE)

Scale Embed

(SE)

 $+\mathcal{L}^{\mathrm{reg}}$

 $\mathcal{L}_{\mathrm{Joint}}$

 $\mathcal{L}_{\rm Align}$

 $\mathcal{L}_{\mathrm{CMLM}}$

 $\mathcal{L}_{\mathrm{CMFM}}$

 $\mathcal{L}_{ ext{Decoder}}$

Pretext

Task Losses

W

ransform

ansform Encoder

Video

Foundation Model

Text

Encode

Method

[CLS] toast the [MASK]

[MASK] in the toaste [SEP]

Video

Clip Data

Results

 $\mathbf{\hat{o}}$

Models		MSR	VTT-7k		MSRVTT-9k				
	R@1↑	R@5↑	R@10↑	MedR↓	R@1↑	R@5↑	R@10↑	MedR↓	
MIL-NCE [52]	9.9	24.0	32.4	29.5	-		-	-	
JSFusion [55]	10.2	31.2	43.2	13	-	-	-	-	
HowTo100M [35]	14.9	40.2	52.8	9	-	-	-	-	
HERO [26]	16.8	43.4	57.7	-	-	-	-	-	
ClipBERT [56]	22.2	46.8	59.9	6	-	-	-	-	
MMT [20]	-	-	-	-	26.6	57.1	69.6	4	
T2VLAD [57]	-	-	-	-	29.5	59.0	70.1	4	
TACo [24]	19.2	44.7	57.2	7	28.4	57.8	71.2	4	
VideoCLIP [54]	-	-	-	-	30.9	55.4	66.8	-	
Frozen [58]	-	-	-	-	32.5	61.5	71.2	3	
UniVL-Joint [7]	20.6	49.1	62.9	6	27.2	55.7	68.7	4	
UniVL-Align [7]	21.2	49.6	63.1	6	-	-	-	-	
UniVL + MELTR	28.5	55.5	67.6	4	31.1	55.7	68.3	4	
Violet [16]	31.7	60.1	74.6	3	34.5	63.0	73.4	-	
Violet + MELTR	33.6	63.7	77.8	3	35.5	67.2	78.4	3	
All-in-one [17]	34.4	65.4	75.8	-	37.9	68.1	77.1	-	
All-in-one + MELTR	38.6	74.4	84.7	-	41.3	73.5	82.5	-	

Meta

Loss

FFN

Transforme

MELTR

Huaishao Luo et al. UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation. arxiv, 2021. 2 / 14

Korea University

Video Foundation Models

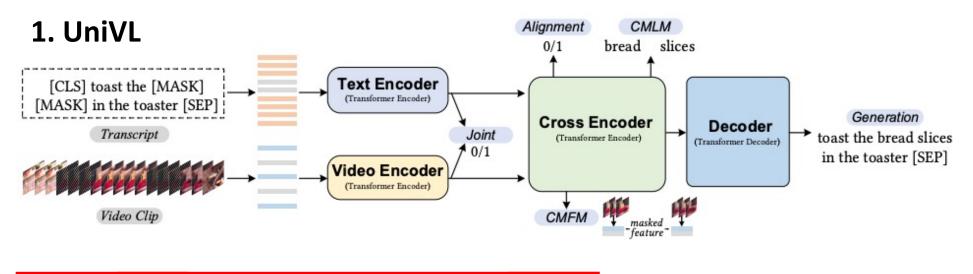
• Large-scale foundation models pretrained on huge amounts of data.

• Advantages of adaptability and generalizability to a wide range of downstream tasks.

Pre-trained with a *linear* combination of various pretext tasks.
Ex) text-video alignment (VTC, VTM), MLM, MFM, and generation.

Korea University

Video Foundation Models



 $\mathcal{L}_{\mathrm{UniVL}} = \mathcal{L}_{\mathrm{Joint}} + \mathcal{L}_{\mathrm{CMLM}} + \mathcal{L}_{\mathrm{CMFM}} + \mathcal{L}_{\mathrm{Align}} + \mathcal{L}_{\mathrm{Decoder}}$

Huaishao Luo et al. UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation. arxiv, 2021. 4 / 14

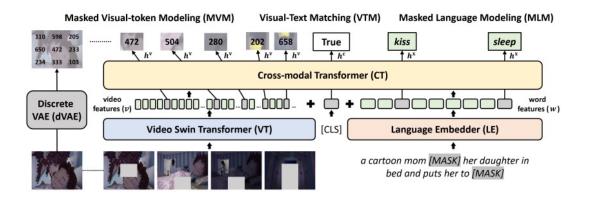
CVPR 2023

Motivation

Video Foundation Models

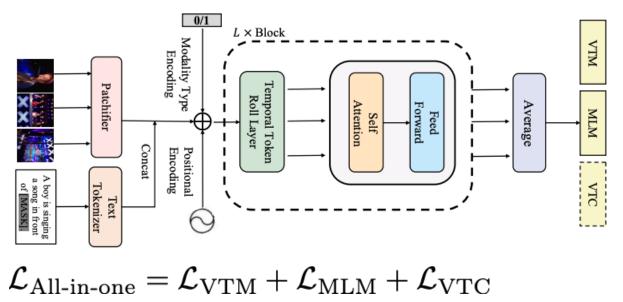
2. Violet

KOREA



$\mathcal{L}_{\rm Violet} = \mathcal{L}_{\rm MLM} + \mathcal{L}_{\rm VTM} + \mathcal{L}_{\rm MVM}$

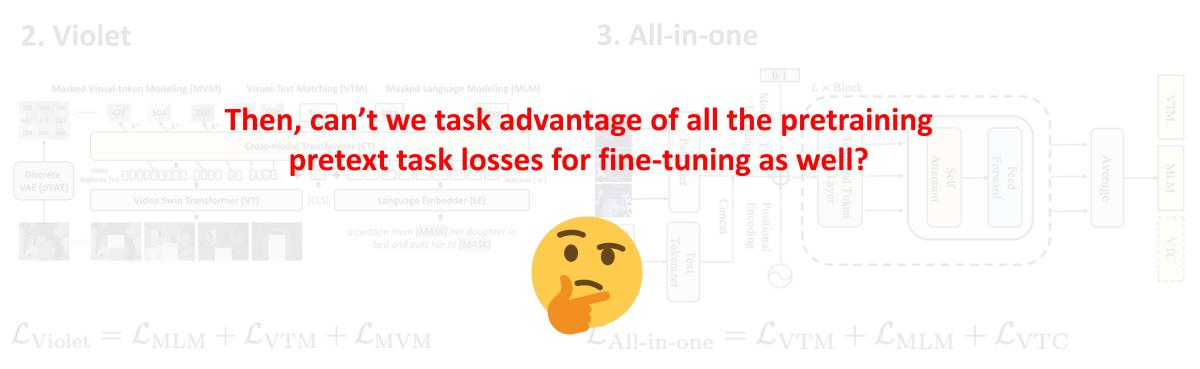
3. All-in-one



Tsu-Jui Fu et al. Violet: End-to-end video-language transformers with masked visual-token modeling. arxiv, 2023.

Jinpeng Wang et al. All in One: Exploring Unified Video-Language Pre-training. CVPR, 2023. 5 / 14

Video Foundation Models



Tsu-Jui Fu et al. Violet: End-to-end video-language transformers with masked visual-token modeling. arxiv, 2023.

Jinpeng Wang et al. All in One: Exploring Unified Video-Language Pre-training. CVPR, 2023. 6 / 14

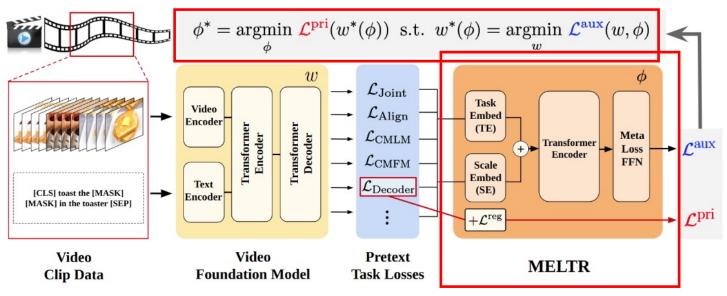
Korea University

Auxiliary Learning

	Multi-task learning	Auxiliary learning				
Use multiple tasks?	Yes	Yes				
Purpose	Aims for generalization across tasks	Focues only on the primary task by taking advantage of auxiliary tasks				

- Learns to adaptively leverage multiple auxiliary tasks to assist learning of the primary task (based on Meta-learning).
- The pretext task losses can be **unified into a single auxiliary loss** to be optimized in a way that helps the target downstream task.

Meta Loss Transformer (MELTR)



- A plug-in module for meta auxiliary learning
- Adopt Transformer architecture.
- MELTR is optimized to help learning of the primary task.

8/14

Korea University

[CLS] toast the [MASK]

IMASKI in the toaster [SEP]

Video

Clip Data

VideoPretextMELTRFoundation ModelTask Losses

Task

Embed

(TE)

Scale Embed

(SE)

 $+\mathcal{L}^{\mathrm{reg}}$

(+)

 $\mathcal{L}_{\mathrm{Joint}}$

 $\mathcal{L}_{\mathrm{Align}}$

 $\mathcal{L}_{\mathrm{CMLM}}$

 $\mathcal{L}_{\mathrm{CMFM}}$

 $\mathcal{L}_{ ext{Decoder}}$

 $\mathcal{L}^{\text{pri}} = \mathcal{L}_0 + \gamma \mathcal{L}^{\text{reg}}, \quad \mathcal{L}^{\text{aux}} = \text{MELTR}(\boldsymbol{\ell}; \phi)$

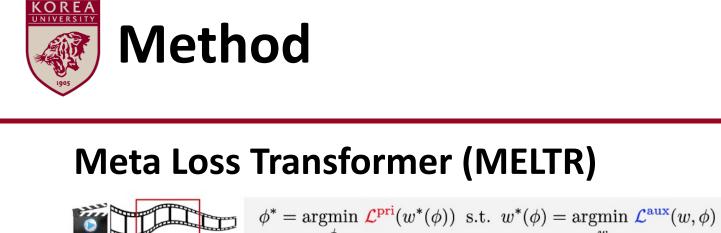
Transformer Decoder

lransformer Encoder Calculate losses:

 $\ell_t = \mathcal{L}_t(\mathcal{F}(x; w), y_t)$

• Transform losses into a single unified loss: $\mathcal{L}^{aux} := MELTR(\boldsymbol{\ell}; \boldsymbol{\phi})$

$$\mathcal{L}^{\mathrm{reg}} = \left| \mathrm{MELTR}(\boldsymbol{\ell}; \phi) - \sum_{t=0}^{T} \ell_t \right|$$



Video

Encoder

Text

Encoder

Meta

Loss

FFN

 $\rightarrow \mathcal{L}^{aux}$

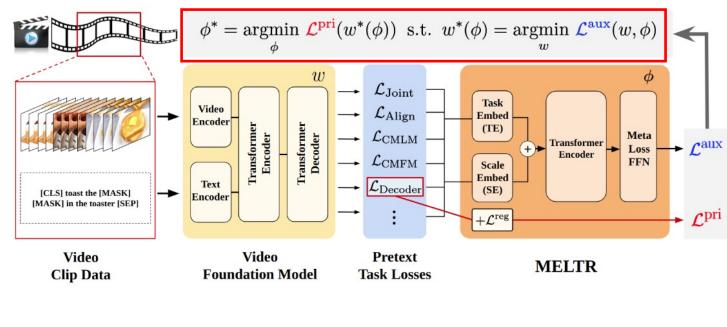
 \mathcal{L}^{pri}

Transformer

Encoder

Method

Meta Loss Transformer (MELTR)



CVPR 2023

 $\mathcal{L}^{\text{pri}} = \mathcal{L}_0 + \gamma \mathcal{L}^{\text{reg}}, \quad \mathcal{L}^{\text{aux}} = \text{MELTR}(\boldsymbol{\ell}; \phi)$

• Objective function

 $\phi^* = \underset{\phi}{\arg\min} \mathcal{L}^{\text{pri}}(w^*(\phi))$ s.t. $w^*(\phi) = \underset{w}{\arg\min} \mathcal{L}^{\text{aux}}(w, \phi)$

- For K steps, update backbone foundation model: $w^{(k+1)} = w^{(k)} - \alpha \cdot \nabla_w \mathcal{L}^{aux}$
- Then, update MELTR: $\phi^* = \phi - \beta \cdot \nabla_{\phi} \mathcal{L}^{\text{pri}}(w^{(K)}(\phi))$ $= \phi + \beta \cdot (\nabla_w \mathcal{L}^{\text{pri}} \cdot \nabla_{\phi} \nabla_w \mathcal{L}^{\text{aux}})$

10/14

Quantitative results

Models	Action	TGIF-QA Transition	Frame	MSVD-QA
HME [61]	73.9	77.8	53.8	33.7
HCRN [62]	75.0	81.4	55.9	36.1
QueST [63]	75.9	81.0	59.7	36.1
ClipBERT [64]	82.9	87.5	59.4	-
Violet [16]	92.5	95.7	62.3^{\dagger}	47.9
Violet + MELTR	95.4	97.5	63.4	51.7

Models	BA↑	F1↑	MAE↓	Corr↑
MulT	83.0	82.8	0.870	0.698
FMT	83.5	83.5	0.837	0.744
UniVL	84.6	84.6	0.781	0.767
UniVL + MELTR	85.3	85.4	0.759	0.789

Models	R@1↑	R@5↑	R@10↑	MedR↓
HGLMM-FV-CCA [55]	4.6	21.6	14.3	75
HowTo100M [35]	8.2	35.3	24.5	24
ActBERT [29]	9.6	26.7	38.0	19
MIL-NCE [56]	15.1	38.0	51.2	10
COOT [57]	16.7	40.2	25.3	9
TACo [24]	29.6	59.7	72.7	9
VideoCLIP [58]	32.2	62.6	75.0	-
UniVL-Joint [7]	22.2	52.2	66.2	5
UniVL-Align [7]	28.9	57.6	70.0	4
UniVL + MELTR ⁻	33.4	62.5	73.3	3
UniVL + MELTR	33.7	63.1	74.8	3

Video question answering

Multi-modal sentiment analysis on CMU-MOSI

les en les meses est

Text-to-video retrieval on YouCook2

Models	Modality	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
EMT [65]	V	7.53	4.38	11.55	27.44	0.38
CBT [27]	V V	-	5.12	12.97	30.44	0.64
ctBERT [29]	v	8.66	5.41	13.30	30.56	0.65
ideoBERT [28]	V V	6.33	3.81	10.81	27.14	0.47
OOT [57]	V	17.97	11.30	19.85	37.94	0.57
deoBERT [28]	V+T	7.59	4.33	11.94	28.80	0.55
PC [66]	V+T	7.60	2.76	18.08	-	-
Γ+Video [67]	V+T	-	9.01	17.77	36.65	1.12
niVL [7]	V	16.46	11.17	17.57	40.09	1.27
IniVL + MELTR	V	17.35	11.98	18.19	41.28	1.38
niVL [7]	V+T	23.87	17.35	22.35	46.52	1.81
niVL + MELTR	V+T	24.12	17.92	22.56	47.04	1.90

Video captioning on YouCook2

Models	Modality	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
PickNet [68]	V	-	35.6	26.8	58.2	41.0
PickNet [68]	V+T	-	38.9	27.2	59.5	42.1
MARN [69]	V	-	40.4	28.1	60.7	47.1
SibNet [70]	V	-	40.9	27.5	60.2	47.5
OA-BTG [71]	v	-	41.4	28.2	-	46.9
POS-VCT [72]	V	-	42.3	29.7	62.8	49.1
ORG-TRL [73]	v	-	43.6	28.8	62.1	50.9
UniVL* [7]	V V	53.42	41.79	28.94	60.78	50.04
UniVL + MELTR	V	55.88	44.17	29.26	62.35	52.77

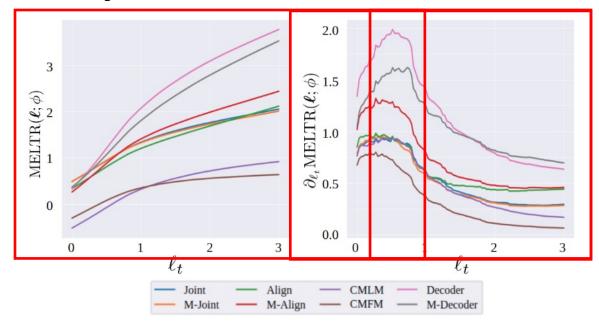
Video captioning on MSRVTT

Models	R@1↑	R@5↑	R@10↑	MedR↓
MIL-NCE [56]	9.9	24.0	32.4	29.5
JSFusion [59]	10.2	31.2	43.2	13
HowTo100M [35]	14.9	40.2	52.8	9
HERO [26]	16.8	43.4	57.7	-
ClipBERT [60]	22.2	46.8	59.9	6
TACo [24]	19.2	44.7	57.2	7
UniVL-Joint [7]	20.6	49.1	62.9	6
UniVL-Align [7]	21.2	49.6	63.1	6
UniVL + MELTR	28.5	55.5	67.6	4
Violet [16]	31.7†	60.1^{+}	74.6^{\dagger}	3†
Violet + MELTR	33.6	63.7	77.8	3
All-in-one [17]	34.4	65.4	75.8	-
All-in-one + MELTR	38.6	74.4	84.7	-
				_

Text-to-video retrieval on MSRVTT 11/14

Korea University

Analysis: Non-linear loss transformation



$$\partial_{\ell_t} \mathrm{MELTR}(\boldsymbol{\ell}; \phi) := \frac{\partial}{\partial \ell_t} \mathrm{MELTR}(\boldsymbol{\ell}; \phi)$$

- Non-linearly correlated.
- $\partial_{\ell_t} \text{MELTR}(\boldsymbol{\ell}; \phi)$ have relatively higher values around $\ell_t = 0.5$.
 - Focus on reasonably challenging samples
- MELTR is more sensitive to $\mathcal{L}_{Decoder}$ and $\mathcal{L}_{M-Decoder}$ than \mathcal{L}_{CMFM} .

Analysis: Adaptive task re-weighting

Models		Coefficient of each task								Video caj	ptioning on Y	YouCook2	
	$\mathcal{L}_{\text{Joint}}$	$\mathcal{L}_{M\text{-Joint}}$	\mathcal{L}_{Align}	$\mathcal{L}_{M\text{-}Align}$	$\mathcal{L}_{\text{CMLM}}$	$\mathcal{L}_{\text{CMFM}}$	$\mathcal{L}_{\text{Decoder}}$	$\mathcal{L}_{M\text{-}Decoder}$	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
(A)	0	0	0	0	0	0	1	0	22.79	16.54	21.73	45.85	1.78
(B)	0	0	0	0	0	0	1	1	23.42	17.14	22.27	46.65	1.85
(C)	1	1	1	1	1	1	1	1	21.72	15.93	20.89	45.16	1.79
(D)	1	1	1	1	1	0	1	1	21.99	16.10	21.09	45.35	1.85
(E)	1	1	1	1	1	0	8	8	23.31	17.23	21.98	46.26	1.85
MELTR		ADAPTIVE						24.12	17.92	22.56	47.04	1.90	

- MELTR learns to integrate various pretext task losses into one loss function to boost the performance of the target downstream task.
- By plugging MELTR into various foundation models, our method outperformed video foundation models as well as task-specific models on a wide range of downstream tasks.
- We provide in-depth qualitative analyses of how MELTR adequately transforms individual loss functions and melts them into an effective unified loss function.