

WED-AM-115

ACL-SPC: Adaptive Closed-Loop system for Self-Supervised Point Cloud Completion

Sangmin Hong^{*}, Mohsen Yavartanoo^{*}, Reyhaneh Neshatavar, and Kyoung Mu Lee Computer Vision Lab. Dept. of ECE, ASRI, Seoul National University, Korea <u>https://cv.snu.ac.kr</u>

Point Cloud Completion

Computer**Vision**Lab Seoul National University

- **Partial point cloud:** Point clouds obtained from a real-world sensor or multiview images.
- **Point cloud completion:** Completing missing parts of 3D shapes from a partial point cloud.

Motivations

- Collecting paired/unpaired data or multiple partial view are difficult in practice for real-world applications.
- We propose ACL-SPC, the first self-supervised framework, for point cloud completion.

Previous Methods

- Supervised Point Cloud Completion:
 - Training the model by reducing the reconstruction loss between the generated point cloud and ground truth.

- Unsupervised Point Cloud Completion:
 - Weakly supervised methods utilize multiple partial views of object as supervision.
 - Attempts to utilize unpaired complete point clouds.

Overview of ACL-SPC

• Adaptive closed-loop (ACL): A system where a controller automatically gives compensated signal for the variations in the system.

Framework of ACL-SPC

Self-Supervised Loss (1)

• Weighted Chamfer distance between the input and output.

$$\mathcal{L}^{\text{wcd}} = \frac{\alpha}{N_{\text{c}}} \sum_{p \in C_0} \min_{q \in P_0} ||p - q||_2 + \frac{\beta}{N_{\text{p}}} \sum_{q \in P_0} \min_{p \in C_0} ||q - p||_2$$

Self-Supervised Loss (2)

• Consistency loss between the regenerated complete point cloud and the initially generated one.

$$\mathcal{L}^{\text{cons}} = \frac{1}{N_{\text{c}} \times N_{\text{s}}} \sum_{v \in \{v_i\}_{i=1}^{N_s}} ||C_v - C_0||_2^2,$$

Experiment on synthetic dataset

Supervision	Method	Airplane			Car			Chair		
		P↓	C↓	CD↓	P↓	C↓	CD↓	P↓	C↓	CD↓
Unsupervised	DPC [16]		-	3.91	-	-	3.47	-	-	4.30
	Gu et al. [15]	0.91	1.05	1.95	1.27	1.41	2.68	1.69	1.64	3.33
	PointPnCNet [21]	1.58	1.74	3.32	1.08	2.08	4.96	2.72	2.68	5.40
Self-supervised	Ours	1.20	0.80	2.01	1.65	1.28	2.93	2.25	1.46	3.71

Experiment on real-world dataset

Supervision	Method	P↓	C↓	CD↓
	GRNet [43]	4.63	6.90	11.53
Supervised	SFNet [42]	14.12	12.64	26.76
	Pcn [49]	9.83	17.96	27.79
Unsupervised	Gu <i>et al.</i> [15]	8.70	10.70	19.40
	PointPnCNet [21]	9.00	10.00	19.00
Self-supervised	Ours	11.67	5.63	17.30
	antha and			

Conclusion

- We propose ACL-SPC, the first self-supervised point cloud completion method from only a single input partial point cloud.
- Through experiments, we show that our method can be more useful in real-world scenarios without performance degradation.
- One limitation is that there is no constraint for redundant points.

http://cv.snu.ac.kr

