

Yikai Wang¹, Wenbing Huang², Yinpeng Dong^{1,3}, Fuchun Sun¹, Anbang Yao⁴

 ¹BNRist Center, State Key Lab on Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University
²Gaoling School of Artificial Intelligence, Renmin University of China ³RealAI ⁴Intel Labs China

Primary Contact: Yikai Wang (yikaiw@outlook.com)

- We introduce how to compact and accelerate BNN further by <u>Sparse Kernel Selection</u>, abbreviated as **Sparks**.
- Our work is build based on a previously revealed phenomenon (by SNN^[1]) that the 3×3 binary kernels in successful BNNs are nearly power-law distributed, their values being mostly clustered into a small portion of codewords. See the difference between Figure (a) and (b).
- In SNN, we observe that the sub-codebook is easy to degenerate during training (see Figure (c)), since codewords tend to be repetitive when being updated independently.
- While in our Sparks (Figure (d)), the diversity of codewords preserves by selection-based learning.

[1] Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks. ICCV 2021.

(K = 3 for 3×3 binary kernels)

Property 1 We denote $\mathbb{B} = \{-1, +1\}^{K \times K}$ as the codebook of binary kernels. For each $w \in \mathbb{R}^{K \times K}$, the binary kernel \hat{w} can be derived by a grouping process:

$$\hat{\boldsymbol{w}} = \operatorname{sign}(\boldsymbol{w}) = \operatorname{arg\,min}_{\boldsymbol{u} \in \mathbb{B}} \|\boldsymbol{u} - \boldsymbol{w}\|_2. \tag{1}$$

We compact BNNs by recasting the grouping as $\hat{\boldsymbol{w}} = \underset{\boldsymbol{u} \in \mathbb{U}}{\arg \min} \|\boldsymbol{u} - \boldsymbol{w}\|_2, \ s.t. \ \mathbb{U} \subseteq \mathbb{B}.$

Matrix representation, where P is a permutation matrix and V is fixed as a certain initial selection,

$$\hat{oldsymbol{w}} = rgmin_{oldsymbol{u}\in\mathbb{U}} \|oldsymbol{u}-oldsymbol{w}\|_2, \ \textit{s.t.} \ oldsymbol{U} = oldsymbol{BPV}, oldsymbol{P}\in\mathbb{P}_N,$$

We learn the permutation matrix P by Gumbel-Sinkhorn, denoted as P_{GS} .

Backward passBackward passBackward pass
$$P_{real} = Hungarian(P_{GS}),$$
 $g(w_{c,i}) \approx \begin{cases} g(\hat{w}_{c,i}), & \text{if } w_{c,i} \in (-1,1), \\ 0, & \text{otherwise}, \end{cases}$ $\int_{0, & \text{otherwise}, \\ 0, & \text{otherwise}, \end{cases}$ $P_{real} = Hungarian(P_{GS})$ Sub-codebook selection $U = BP_{real}V,$ $g(u_j) = \sum_{c=1}^{C_{in} \times C_{out}} g(\hat{w}_c) \cdot \mathbb{I}_{u_j = \arg\min_{u \in U} \|u - w_c\|_2},$ $\int_{0, & \text{otherwise}, \\ g(P_{real}) = B^{\top}g(U)V^{\top},$ $g(P_{real}) = B^{\top}g(U)V^{\top},$ $g(P_{real}), & (\text{our PSTE, will be introduced})$ $\int_{0, & \text{otherwise, } \\ g(W_{c,i}) \approx \{g(\hat{w}_{c,i}), & \text{if } w_{c,i} \in (-1,1), \\ 0, & \text{otherwise, } \\ g(W_{c,i}) \approx g(W_{c,i}), & g(W_{c,i}) \approx g(W_{c,i}) \approx g(W_{c,i}), & g(W_{c,i}) \approx g$

How Gumbel-Sinkhorn in our setting works?

Given a matrix $X \in \mathbb{R}^{N \times N}$ $(N = |\mathbb{B}|)$, the Sinkhorn operator over $\mathcal{S}(X)$ is proceeded as follow,

$$S^0(X) = \exp(X),$$
 (5)

$$\mathcal{S}^{k}(\boldsymbol{X}) = \mathcal{T}_{c}\left(\mathcal{T}_{r}(S^{k-1}(\boldsymbol{X}))\right),\tag{6}$$

$$S(\boldsymbol{X}) = \lim_{k \to \infty} S^k(\boldsymbol{X}), \tag{7}$$

where $\mathcal{T}_r(\mathbf{X}) = \mathbf{X} \oslash (\mathbf{X} \mathbf{1}_N \mathbf{1}_N^{\top})$ and $\mathcal{T}_c(\mathbf{X}) = \mathbf{X} \oslash (\mathbf{1}_N \mathbf{1}_N^{\top} \mathbf{X})$ are the row-wise and column-wise normalization operators, and \oslash denotes the element-wise division. For stability purpose, both normalization operators are calculated in the log domain in practice. The work by [41] proved that $\mathcal{S}(\mathbf{X})$ belongs to the Birkhoff polytope—the set of doubly stochastic matrices.

By substituting the Gumbel-Sinkhorn matrix, we characterize the sub-codebook selection as $U = BS^k((X + \epsilon)/\tau)V$,

JUNE 18-22, 2023

PSTE: Approximate the gradient of the Gumbel-Sinkhorn matrix P_{GS} with P_{real} . We have the following theorem to guarantee the convergence for sufficiently large k and small τ .

Lemma 1 For sufficiently large k and small τ , we define the entropy of a doubly-stochastic matrix \mathbf{P} as $h(\mathbf{P}) = -\sum_{i,j} P_{i,j} \log P_{i,j}$, and denote the rate of convergence for the Sinkhorn operator as $r (0 < r < 1)^3$. There exists a convergence series $s_{\tau} (s_{\tau} \to 0$ when $\tau \to 0^+$) that satisfies

$$\|\boldsymbol{P}_{\text{real}} - \boldsymbol{P}_{\text{GS}}\|_{2}^{2} = \mathcal{O}(s_{\tau}^{2} + r^{2k}).$$
 (18)

Theorem 1 Assume that the training objective f w.r.t. P_{GS} is L-smooth, and the stochastic gradient of P_{real} is bounded by $\mathbb{E} ||\mathbf{g}(P_{real})||_2^2 \leq \sigma^2$. Denote the rate of convergence for the Sinkhorn operator as r (0 < r < 1) and the stationary point as P_{GS}^* . Let the learning rate of *PSTE be* $\eta = \frac{c}{\sqrt{T}}$ with $c = \sqrt{\frac{f(P_{GS}^0) - f(P_{GS}^*)}{L\sigma^2}}$. For a uniformly chosen u from the iterates $\{P_{real}^0, \dots, P_{real}^T\}$, concretely $u = P_{real}^t$ with the probability $p_t = \frac{1}{T+1}$, it holds in expectation over the stochasticity and the selection of u:

$$\mathbb{E}\|\nabla f(\boldsymbol{u})\|_{2}^{2} = \mathcal{O}\left(\sigma\sqrt{\frac{f(\boldsymbol{P}_{\mathrm{GS}}^{0}) - f(\boldsymbol{P}_{\mathrm{GS}}^{\star})}{T/L}} + L^{2}\left(s_{\tau}^{2} + r^{2k}\right)\right).$$
(19)

• Comparisons of top-1 and top-5 accuracies with state-of-the-art methods on ImageNet based on ResNet-18
--

Mathad	Bit-width	Accuracy (%)		Storage	BOPs
Method	(W/A)	Top-1	Top-5	(Mbit)	(×10 ⁹)
Full-precision	32/32	69.6	89.2	351.5	$107.2(1 \times)$
BNN [16]	1/1	42.2	69.2	11.0 (32×)	1.70 (63×)
XNOR-Net [37]	1/1	51.2	73.2	11.0 (32×)	1.70 (63×)
Bi-RealNet [31]	1/1	56.4	79.5	11.0 (32×)	1.68 (64×)
IR-Net [36]	1/1	58.1	80.0	11.0 (32×)	1.68 (64×)
LNS [10]	1/1	59.4	81.7	11.0 (32×)	1.68 (64×)
RBNN [26]	1/1	59.9	81.9	11.0 (32×)	1.68 (64×)
Ensemble-BNN [52]	$(1/1) \times 6$	61.0	-	65.9 (5.3×)	10.6 (10×)
ABC-Net [28]	$(1/1) \times 5^2$	65.0	85.9	274.5 (1.3×)	42.5 (2.5×)
Real-to-Bin [33]	1/1	65.4	86.2	11.0 (32×)	1.68 (64×)
ReActNet [32]	1/1	65.9	86.4	$11.0(32 \times)$	1.68 (64×)
SLBF [24]	0.55/1	57.7	80.2	6.05 (58×)	0.92 (117×)
SLBF [24]	0.31/1	52.5	76.1	3.41 (103×)	0.98 (110×)
FleXOR [25]	0.80/1	62.4	83.0	$8.80(40 \times)$	1.68 (64×)
FleXOR [25]	0.60/1	59.8	81.9	6.60 (53×)	1.68 (64×)
Sparks (ours)	0.78/1	65.5	86.2	8.57 (41×)	1.22 (88×)
Sparks (ours)	0.67/1	65.0	86.0	7.32 (48×)	$0.88(122 \times)$
Sparks (ours)	0.56/1	64.3	85.6	6.10 (58×)	0.50 (214 $ imes$)

• Results when extending our Sparks to wider or deeper models.

Method	Backbone	Bit-width (W/A)	Accura Top-1	юу (%) Тор-5	Storage (Mbit)	BOPs $(\times 10^9)$
ReActNet [32]	ResNet-18	1/1	65.9	86.4	11.0	1.68
Sparks-wide	ResNet-18 (+ABC-Net [28])	(0.56/1)×3	66.7	86.9	18.3	1.50
Sparks-deep Sparks-deep	ResNet-34 ResNet-34	0.56/1 0.44/1	67.6 66.4	87.5 86.7	11.7 9.4	0.96 0.58

• Trade-off between performance and complexity on ImageNet,

• Ablation studies on ImageNet with ResNet-18,

Thanks