

ARO-Net: Learning Implicit Fields from Anchored Radial Observations

Yizhi Wang^{1,2*}, Zeyu Huang^{1*}, Ariel Shamir³, Hui Huang¹, Hao (Richard) Zhang², Ruizhen Hu^{1[†]}

¹Shenzhen University ²Simon Fraser University ³Reichman University

(* equal contribution, † corresponding author)

Code: https://github.com/yizhiwang96/ARO-Net

- A novel shape encoding for learning implicit field representation of shapes that is category-agnostic and generalizable
- The core idea is to reason about shapes through partial observations from a set of viewpoints, called *anchors*

• We design ARO-Net, to predict the occupancy value of a query point in space from input point cloud

Input point cloud of 'G'

• ARO-Net is category-agnostic and generalizable amid significant shape variations

3D Reconstruction from sparse point clouds by ARO-Net trained on 4K chairs

• ARO-Net is category-agnostic and generalizable amid significant shape variations

ARO-Net trained on only the Fertility model with rotation and scaling

Related work

Related work

 Differently from prior neural implicit models, that use global or local grid shape feature, our shape encoder operates on contextual, queryspecific features

3D reconstruction from a sparse point cloud of a **cube** (a), with training on a single **sphere**

Method

The visible regions of different anchors, colored in blue for interior anchors and green for exterior anchors

A query point (red star) is inside the shape

 \Leftrightarrow

it is covered by at least one radial observation (the red anchor)

A query point (red star) is inside the shape

 \Leftrightarrow it is not covered by any of the visible regions

If the query point is

- in the **blue** or **green** regions: the situations are the same as (b) or (c)
- in R1: R1 is bounded by the visible regions of the red anchors, the situation turns into (c)
- in **R2**: R2 is bounded by some anchors and the virtual bounding box, the situation turns into (b)

If we have a set of anchors that together observe the entire surface of the shape:

The inside/outside judgment of a spatial point relative to the shape

The point's relationship to the radial observations of the anchors

What if the shape is only **partially** observed by the anchors & we don't know whether each anchor is inside or outside the shape?

The inside/outside judgment of a spatial point relative to the shape

The point's coordinates & the radial observations of the anchors

ARO Network

(a) Anchors and input point cloud

ARO Network

Anchor Placement

(1) uniformly sample m (48 by default) points on the surface of the unit sphere with radius r = 1/2 using Fibonacci Sampling (2) for the points with index i%3 = 1, move them to the sphere with radius r = 1/4; for the points with index i%3 = 2, further move them to the sphere with radius r = 1/8

Experiments

Visual Comparisons - ABC

ARO-Net is able to reconstruct both **global structure** and **local detail** well, including **sharp features** as UNDC, and its results exhibit the least amount of artifacts in terms of holes and noise

Visual Comparisons - ABC

Visual Comparisons – ShapeNet etc.

All methods (except SPR) were trained on **chairs** in ShapeNet and tested on chairs, airplanes, and rifles in ShapeNet V1 and animals in PSB.

Quantitative Comparisons

Method	LFD↓	HD↓	CD↓	EMD↓	IOU↑	Method	LFD↓	HD↓	CD↓	EMD↓	Method	LFD↓	HD↓	CD↓	EMD↓
IM-Net [8]	3.27	11.96	57.00	11.40	3.63	IM-Net [8]	3.18	9.04	13.84	15.40	IM-Net [8]	14.30	19.50	44.84	41.38
OccNet [23]	2.49	11.95	54.68	11.60	3.51	OccNet [23]	2.59	7.77	12.36	13.47	OccNet [23]	12.31	18.86	39.75	38.57
BPS [26]	2.64	5.03	11.72	2.66	6.56	BPS [26]	4.31	12.28	20.51	23.30	BPS [26]	13.73	19.48	38.10	36.61
ConvONet [25]	2.69	3.87	8.43	1.71	6.78	ConvONet [25]	<u>2.12</u>	6.22	11.20	12.30	ConvONet [25]	5.69	15.98	13.50	10.75
Points2Surf [11]	1.64	<u>2.75</u>	5.69	1.25	<u>8.36</u>	Points2Surf [11]	2.51	6.46	8.60	7.34	Points2Surf [11]	5.48	4.70	4.86	5.76
UNDC [7]	1.25	2.78	4.90	<u>1.17</u>	8.21	UNDC [7]	2.19	<u>5.60</u>	6.06	6.80	UNDC [7]	<u>3.62</u>	<u>4.40</u>	3.98	3.98
ARO-Net	<u>1.35</u>	2.25	<u>5.46</u>	1.12	8.79	ARO-Net	1.92	5.33	<u>7.14</u>	7.70	ARO-Net	3.56	4.32	<u>4.61</u>	<u>4.73</u>

Trained on ABC, tested on ABC

Trained on chairs, tested on chairs

Trained on chairs, tested on airplanes

LFD: light filed distance HD: hausdoff distance CD: chamfer distance EMD: earth mover's distance IOU: occupancy IOU

- ARO-Net exhibits a clear advantage in
 - IOU, EMD and HD on ABC
 - LFD and HD on ShapeNet
- For the remaining CD metric, ARO-Net is still a close runner-up

Robustness Against Sparsity

- Once trained with 2,048-point input, ARO-Net can produce quality results with sparser inputs *without re-training*.
- The reconstruction quality of both UNDC and Points2Surf degrades dramatically when the point num decreases from 2,048 to 512

Different Anchor Placement Strategies

Uniform Sampling

Gird Sampling

Fibonacci Sampling

In uniform sampling, we have defined as matrix we first choose all grid sample m = 48 points in points $\{(x, y, z) | x, y, z \in \{-0.5, -0.25, 0, 0.25, 0.5\}\}$ inside the unit sphere and then randomly select from remaining grid points to make a total count of 48

Different Anchor Placement Strategies

Grid sampling makes training relatively unstable

Fibonacci sampling makes training the smoothest

Visual Comparisons – One Shape Training

- One shape: the Fertility
- Data augmentations
 - Translations
 - Scaling
 - Rotations

• ...

Visual Comparisons – One Shape Training

ARO-Net can reconstruct the best details from sparse point cloud

Visual Comparisons – One Shape Training

ARO-Net can reconstruct the best details from sparse point cloud

Ablation Studies

Setting	LFD↓	HD↓	CD↓	EMD↓	IOU↑
m = 24	1.48	2.33	5.94	1.28	8.66
m = 96	1.30	2.16	5.31	1.03	8.92
MLP	1.44	2.30	5.90	1.14	8.75
Default	1.35	2.25	5.46	1.12	8.79

Replacing Transformers with MLP: the superior results by ARO-Net are predominantly owing to ARO rather than the decoder architecture m = 24, 96: a trade-off between reconstruction performance and computational cost

Limitations

- ARO-Net runs slow because
 - Performing *finding top-k points in a cone* operation for *m* times
 - Network parameters/computation cost grow with $m{m}$ linearly
- ARO-Net's performance depends on
 - The number of the anchors
 - Placement of the anchors

Thanks!