

Ground-Truth Free Meta-Learning for Deep Compressive Sampling

Xinran Qin

Yuhui Quan

School of Computer Science and Engineering South China University of Technology

Tongyao Pang

Hui Ji

Department of Mathematics National University of Singapore

Compressive Sampling (CS) in Imaging

Motivation

Unsupervised External Learning (End2End DNNs)

- (+) Exploiting large datasets
- (+) Fast inference

(-) Non-adaptivity to test samples

Test-Time Internal Learning (Untrained DNNs) (+) Sample-specific learning (+) No dataset bias and OOD issues

(-) High-cost sample-wise fitting

Unsupervised (GT-Free) Meta-Learning for CS-Based Image Reconstruction

Framework

Improved SURE (iSURE) loss for meta-learning and adaption

iSURE-based GT-free model-agnostic meta-learning (MAML)

Nullspace-consistent model adaptation

Unrolling CNN with bias-tuning

The iSure Loss

iSURE is a noisy form of SURE to provide robust estimation in $\text{Range}(\Phi^{H})$.

 $\ell^{\text{SURE}}(\boldsymbol{\omega}; \boldsymbol{y}, \boldsymbol{\Phi}) \coloneqq \|\boldsymbol{\Phi}\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}, \boldsymbol{\Phi}) - \boldsymbol{y}\|_{2}^{2} + 2\sigma \text{tr}(\boldsymbol{\Phi}^{+}(\partial \mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}), \boldsymbol{\Phi})/\partial \boldsymbol{y}))$ $\ell^{\text{iSURE}}(\boldsymbol{\omega}; \boldsymbol{y}, \boldsymbol{\Phi}, \boldsymbol{\epsilon}') \coloneqq \|\boldsymbol{\Phi}\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y} + \boldsymbol{\epsilon}', \boldsymbol{\Phi}) - \boldsymbol{y}\|_{2}^{2} + 2\sigma \text{tr}(\boldsymbol{\Phi}^{+}(\partial \mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y} + \boldsymbol{\epsilon}'), \boldsymbol{\Phi})/\partial \boldsymbol{y}))$

- Noise injection mitigates overfitting in GT-free meta-learning and model adaption, as well as allows ensemble in learning and inference.
- iSURE allows efficient gradient update, without using MCMC.

Theorem 1

Let J_{ω} be the Jacobian matrix w.r.t. ω , *i.e.* $J_{\omega}\mathcal{F}_{\omega} = \partial \mathcal{F}_{\omega}/\partial \omega$ and $y = \Phi x + \epsilon$. Assume $\epsilon, \epsilon' \sim \mathcal{N}(0, \sigma^2 I)$ are independent. Then, we have:

 $\nabla_{\boldsymbol{\omega}} \mathbb{E}_{\boldsymbol{y},\boldsymbol{\epsilon}'} \ell^{\mathrm{iSURE}}(\boldsymbol{\omega};\boldsymbol{y},\boldsymbol{\Phi},\boldsymbol{\epsilon}') = 2\mathbb{E}_{\boldsymbol{y},\boldsymbol{\epsilon}'} [J_{\boldsymbol{\omega}}(\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}+\boldsymbol{\epsilon}',\boldsymbol{\Phi})\boldsymbol{\Phi}^+(\boldsymbol{\Phi}\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}+\boldsymbol{\epsilon}',\boldsymbol{\Phi})-\boldsymbol{y}+\boldsymbol{\epsilon}')].$

Unsupervised MAML with Improvement

- Incorporate iSURE into MAML.
- iSURE only measures errors on range space for learning.
- Inner loop with $\mathcal{L}_{\mathbb{Y}}^{\text{ensem}}$ for better addressing the ambiguity on Null(Φ).

Nullspace-Consistent (NC) Adaptation

- Given a test sample $(\mathbf{y}^*, \boldsymbol{\psi})$, iSURE only considers reconstruction on $\text{Range}(\boldsymbol{\psi}^{\text{H}})$ and may bring negative effects to prediction on $\text{Null}(\boldsymbol{\psi})$.
- NC adaptation mitigates negative effects in $\text{Null}(\psi)$ by pulling the prediction on $\text{Null}(\psi)$ back, done by the NC loss:

$$\mathcal{L}_{\boldsymbol{y}^*}^{\mathrm{NC}}(\boldsymbol{\omega};\boldsymbol{\psi},\boldsymbol{\omega}^*) \coloneqq \left\| (\mathbf{I} - \boldsymbol{\psi}\boldsymbol{\psi}^\dagger)(\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}^*,\boldsymbol{\psi}) - \mathcal{F}_{\widetilde{\boldsymbol{\omega}}}(\boldsymbol{y}^*,\boldsymbol{\psi})) \right\|_2^2$$

Unrolling CNN with Bias-Tuning

• Unroll $\mathbf{x}^{(k)} = \operatorname{Prox}_{\psi} \left(\mathbf{x}^{(k-1)} - \rho \Phi^{H} (\Phi \mathbf{x}^{(k-1)} - \mathbf{y}) \right)$ and replace the proximal operator $\operatorname{Prox}_{\psi}$ replaced by a sub-CNN.

- An unrolling CNN acts as an iterative shrinkage process. The biases play a similar role to the thresholds of shrinkage, which are critical.
- **Bias-Tuning:** Only adjusting the bias parameters during adaption.

MR Image Reconstruction

CC	Noice	Regularized		Unsupervised	Inte	ernal	Unsupervis	ed+Internel	Supervised	
CS Potio	Inoise	ZF	SparseMRI	REI	BNN	ASGLD	DDSSL	MetaCS	ADMMNet	Supervised
Ratio	Level	[JMRI-01]	[MRM-07]	[CVPR-22]	[ECCV-20]	[CVPR-22]	[ECCV-22]	(Ours)	[TPAMI-19]	Supervised
20%	0	30.41/.72	35.46/.89	36.07/.90	35.54/.88	36.08/.90	36.73/.92	37.12/.93	37.17/.93	37.58/.94
	10	29.18/.64	29.74/.64	33.94/.89	35.54/.88	36.08/.90	33.79/.90	34.34/.91	34.04/.89	34.32/.90
200/	0	33.01/.80	37.72/.91	38.01/.92	37.14/.89	38.11/.93	38.47/.94	39.59/.95	39.84/.93	40.70/.94
30%	10	30.39/.67	30.55/.68	34.04/.89	31.86/.85	32.25/.87	34.51/.91	35.25/.92	34.82/.90	35.18/.91
4004	0	35.14/.85	38.51/.93	39.06/.95	38.63/.91	39.29/.95	41.00/.96	41.24/.97	41.56/.96	42.52/.98
40%	10	30.81/.68	31.24/.69	34.45/.90	33.32/.86	33.71/.87	34.83/.90	35.53/.91	35.31/.91	35.64/.91
50%	0	37.07/.89	39.93/.94	40.95/.95	40.24/.93	41.60/.95	42.53/.97	43.92/.98	43.00/.97	44.09/.98
	10	30.87/.66	31.54/.67	35.11/.91	34.39/.89	34.51/.89	35.35/.91	36.23/.93	35.71/.91	36.44/.93

Mean PSNR(dB)/SSIM of MR image reconstruction on MRI150 dataset.

Supervised

REI

ASGLD

DDSSL

MetaCS

GT

Natural Image Reconstruction

CS	Noiso	Regularized	Unsupervised		Internel		Unsupervised+Internel		Supervised		
Ratio	Level	TVAL3	L.SURE	REI	BNN	ASGLD	DDSSL	MetaCS	Supervised	COAST	SSLIP
Katio		[COA-13]	[Arxiv-20]	[CVPR-22]	[ECCV-20]	[CVPR-22]	[ECCV-22]	(Ours)	Supervised	[TIP-21]	[NIPS-21]
100/	0	22.45/0.38	25.00/.65	22.79/.64	27.49/.83	28.15/.83	27.48/.84	28.02/.84	26.94/.82	28.34/.84	25.02/.75
10%	10	21.02/0.54	23.31/.64	22.26/.66	25.23/.76	26.02/.76	26.10/.78	26.17/.78	25.03/.70	25.81/.78	24.48/.73
250/	0	27.63/0.62	31.31/.90	31.11/.90	32.30/.92	33.06/.92	33.28/.94	33.38/.94	32.44/.92	33.85/.94	30.42/.89
25%	10	24.75/0.67	28.14/.82	28.08/.81	28.67/.84	29.35/.85	29.61/.87	29.71/.87	29.49/.86	29.37/.86	28.71/.85
40%	0	31.21/0.75	33.30/95	35.63/.95	35.71/.95	35.87/.95	37.18/.96	37.25/.96	36.02/.96	36.94/.96	33.73/.93
	10	26.66/0.72	28.73/.81	28.99/.81	30.39/.88	31.11/.90	31.58/.88	31.64/.88	31.14/.89	31.16/.89	30.58/.89

Mean PSNR(dB)/SSIM of natural image reconstruction on Set11 dataset.

Now, let's dive into the details...

Compressive Sampling (CS) in Imaging

Ground Truth (GT)-Free Learning Meets CS

- New trend: Training deep neural networks (DNNs) for CS-based reconstruction w/o using GT images.
- Two types of GT-free deep learning:

EI/REI [1,2]; DDSSL [3] External learning

Untrained DNNs on test samples

BNN [4], SURE(s) [5],

Internal Learning

[1] Equivariant imaging: Learning beyond the range space. ICCV 2021.
[2] Robust equivariant imaging: a fully unsupervised framework for learning to image from noisy and partial measurements. CVPR 2022.
[3] Dual-Domain Self-supervised Learning and Model Adaption for Deep Compressive Imaging. ECCV 2022.
[4] Self-supervised Bayesian deep learning for image recovery with applications to compressed sensing. ECCV 2020.
[5] Unsupervised learning with stein's unbiased risk estimator. arXivpreprint arXiv, 2018.

Motivation

Unsupervised External Learning (End2End DNNs)

- (+) Exploiting large datasets
- (+) Fast inference

(-) Non-adaptivity to test samples

Test-Time Internal Learning (Untrained DNNs) (+) Sample-specific learning (+) No dataset bias and OOD issues

(-) High-cost sample-wise fitting

Unsupervised (GT-Free) Meta-Learning for CS-Based Image Reconstruction

Framework

Improved SURE (iSURE) loss for meta-learning and adaption

iSURE-based GT-free model-agnostic meta-learning (MAML)

Nullspace-consistent model adaptation

Unrolling CNN with bias-tuning

The iSure Loss

iSURE is a noisy form of SURE to provide robust estimation in Range (Φ^{H}) . $\ell^{\text{iSURE}}(\omega; y, \Phi, \epsilon') \coloneqq \|\Phi \mathcal{F}_{\omega}(y + \epsilon', \Phi) - y\|_{2}^{2} + 2\sigma \text{tr}(\Phi^{+}(\partial \mathcal{F}_{\omega}(y + \epsilon'), \Phi)/\partial y))$

- Noise injection mitigates overfitting in GT-free meta-learning and model adaption, as well as allows ensemble in learning and inference.
- iSURE allows efficient gradient update, without using MCMC.

Theorem 1

Let J_{ω} be the Jacobian matrix w.r.t. ω , *i.e.* $J_{\omega}\mathcal{F}_{\omega} = \partial \mathcal{F}_{\omega}/\partial \omega$ and $y = \Phi x + \epsilon$. Assume $\epsilon, \epsilon' \sim \mathcal{N}(0, \sigma^2 I)$ are independent. Then, we have:

$$\nabla_{\boldsymbol{\omega}} \mathbb{E}_{\boldsymbol{y},\boldsymbol{\epsilon}'} \ell^{\mathrm{iSURE}}(\boldsymbol{\omega};\boldsymbol{y},\boldsymbol{\Phi},\boldsymbol{\epsilon}') = 2\mathbb{E}_{\boldsymbol{y},\boldsymbol{\epsilon}'} [J_{\boldsymbol{\omega}}(\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}+\boldsymbol{\epsilon}',\boldsymbol{\Phi})\boldsymbol{\Phi}^+(\boldsymbol{\Phi}\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}+\boldsymbol{\epsilon}',\boldsymbol{\Phi})-\boldsymbol{y}+\boldsymbol{\epsilon}')].$$

Unsupervised MAML with Improvement

- Incorporate iSURE into MAML.
- iSURE only measures errors on range space for learning.
- Inner loop with $\mathcal{L}_{\mathbb{Y}}^{\text{ensem}}$ for better addressing the ambiguity on Null(Φ).

Nullspace-Consistent (NC) Adaptation

- Given a test sample $(\mathbf{y}^*, \boldsymbol{\psi})$, iSURE only considers reconstruction on $\text{Range}(\boldsymbol{\psi}^{\text{H}})$ and may bring negative effects to prediction on $\text{Null}(\boldsymbol{\psi})$.
- NC adaptation mitigates negative effects in $\text{Null}(\psi)$ by pulling the prediction on $\text{Null}(\psi)$ back, done by the NC loss:

$$\mathcal{L}_{\boldsymbol{y}^*}^{\mathrm{NC}}(\boldsymbol{\omega};\boldsymbol{\psi},\boldsymbol{\omega}^*) \coloneqq \left\| (\mathbf{I} - \boldsymbol{\psi}\boldsymbol{\psi}^\dagger)(\mathcal{F}_{\boldsymbol{\omega}}(\boldsymbol{y}^*,\boldsymbol{\psi}) - \mathcal{F}_{\widetilde{\boldsymbol{\omega}}}(\boldsymbol{y}^*,\boldsymbol{\psi})) \right\|_2^2$$

Unrolling CNN with Bias-Tuning

• Unroll $\mathbf{x}^{(k)} = \operatorname{Prox}_{\psi} \left(\mathbf{x}^{(k-1)} - \rho \Phi^{H} (\Phi \mathbf{x}^{(k-1)} - \mathbf{y}) \right)$ and replace the proximal operator $\operatorname{Prox}_{\psi}$ replaced by a sub-CNN.

- An unrolling CNN acts as an iterative shrinkage process. The biases play a similar role to the thresholds of shrinkage, which are critical.
- **Bias-Tuning:** Only adjusting the bias parameters during adaption.

MR Image Reconstruction

	Naisa	Regularized		Unsupervised		ernal	Unsupervised+Internel		Supervised	
CS Dotio	INOISE	ZF	SparseMRI	REI	BNN	ASGLD	DDSSL	MetaCS	ADMMNet	Supervised
Katio	Level	[JMRI-01]	[MRM-07]	[CVPR-22]	[ECCV-20]	[CVPR-22]	[ECCV-22]	(Ours)	[TPAMI-19]	Supervised
20%	0	30.41/.72	35.46/.89	36.07/.90	35.54/.88	36.08/.90	36.73/.92	37.12/.93	37.17/.93	37.58/.94
	10	29.18/.64	29.74/.64	33.94/.89	35.54/.88	36.08/.90	33.79/.90	34.34/.91	34.04/.89	34.32/.90
200/	0	33.01/.80	37.72/.91	38.01/.92	37.14/.89	38.11/.93	38.47/.94	39.59/.95	39.84/.93	40.70/.94
30%	10	30.39/.67	30.55/.68	34.04/.89	31.86/.85	32.25/.87	34.51/.91	35.25/.92	34.82/.90	35.18/.91
4004	0	35.14/.85	38.51/.93	39.06/.95	38.63/.91	39.29/.95	41.00/.96	41.24/.97	41.56/.96	42.52/.98
40%	10	30.81/.68	31.24/.69	34.45/.90	33.32/.86	33.71/.87	34.83/.90	35.53/.91	35.31/.91	35.64/.91
50%	0	37.07/.89	39.93/.94	40.95/.95	40.24/.93	41.60/.95	42.53/.97	43.92/.98	43.00/.97	44.09/.98
	10	30.87/.66	31.54/.67	35.11/.91	34.39/.89	34.51/.89	35.35/.91	36.23/.93	35.71/.91	36.44/.93

Mean PSNR(dB)/SSIM of MR image reconstruction on MRI150 dataset.

Supervised

REI

ASGLD

DDSSL

MetaCS

GT

Natural Image Reconstruction

CS Ratio	Noise Level	Regularized	egularized Unsupervised		Internel		Unsupervised+Internel		Supervised		
		TVAL3	L.SURE	REI	BNN	ASGLD	DDSSL	MetaCS	Supervised	COAST	SSLIP
		[COA-13]	[Arxiv-20]	[CVPR-22]	[ECCV-20]	[CVPR-22]	[ECCV-22]	(Ours)	Supervised	[TIP-21]	[NIPS-21]
10%	0	22.45/0.38	25.00/.65	22.79/.64	27.49/.83	28.15/.83	27.48/.84	28.02/.84	26.94/.82	28.34/.84	25.02/.75
	10	21.02/0.54	23.31/.64	22.26/.66	25.23/.76	26.02/.76	26.10/.78	26.17/.78	25.03/.70	25.81/.78	24.48/.73
250/	0	27.63/0.62	31.31/.90	31.11/.90	32.30/.92	33.06/.92	33.28/.94	33.38/.94	32.44/.92	33.85/.94	30.42/.89
25%	10	24.75/0.67	28.14/.82	28.08/.81	28.67/.84	29.35/.85	29.61/.87	29.71/.87	29.49/.86	29.37/.86	28.71/.85
40%	0	31.21/0.75	33.30/95	35.63/.95	35.71/.95	35.87/.95	37.18/.96	37.25/.96	36.02/.96	36.94/.96	33.73/.93
	10	26.66/0.72	28.73/.81	28.99/.81	30.39/.88	31.11/.90	31.58/.88	31.64/.88	31.14/.89	31.16/.89	30.58/.89

Mean PSNR(dB)/SSIM of natural image reconstruction on Set11 dataset.

COAST

ASGLD

DDSSL

MetaCS

GT

Comparison on Computational Complexity

Running time (minutes) of different methods on Set11, tested on a TITAN RTX GPU.

Method	LSURE	BNN	ASGLD	DDSSL	MetaCS
r=40%	0.45	282	178	5.72	0.89

Compared to the latest adaption method DDSSL, our MetaCS takes only around 1/7 time!

Comparison in number of model parameters (M).										
COAST	SCI ID		ASCID	DDSCI	MetaCS	MetaCS				
	SOLIL	LDAWF-SUKE	ASULD	DDSSL	(whole)	(bias-only)				
1.12	0.67	0.38	2.19	0.67	0.3756	0.0013				

Our bias-tuning scheme significantly reduces the number of parameters being adapted.

Ablation Studies

Method	Noise	less MR In	naging	Noisy MR Imaging			
Wiethod	r = 1/5	1/4	1/3	r = 1/5	1/4	1/3	
iSure \rightarrow gSURE	29.13	32.57	34.29	28.56	29.17	29.14	
w/o Meta-Learn	32.93	33.97	35.68	29.52	30.03	30.34	
Standard MAML	32.86	34.01	35.73	29.63	30.08	30.42	
w/o Adaption	33.63	34.40	35.89	29.60	30.78	31.36	
w/o NC	33.71	34.65	36.40	30.41	31.01	31.66	
All weights	34.02	34.82	36.58	30.60	31.19	31.74	
Gain-tuning	33.68	34.58	36.19	30.35	30.83	31.37	
MetaCS	34.00	34.85	36.54	30.56	31.17	31.79	

Each component of our approach has noticeable contribution to the performance.

Effectiveness of Meta-Learning & Adaption

Meta-learning leads to faster and more effective model adaptation.

Toot Moole	Trair	n=Test	Gauss, r=1/4		
TESTIVIASK	REI	MetaCS	REI	MetaCS	
Gauss, r=1/3	36.72	37.87	36.38	37.8	
Gauss, r=1/5	34.04	35.52	33.63	35.47	
Radial, r=1/4	33.15	34.46	32.62	34.84	

Adaption for Unseen Measurement Matrices

See more at https://csyhquan.github.io