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Compressive Sampling (CS) in Imaging

Measurement Matrix 

𝚽 ∈ ℂ𝑀×𝑁

Image

𝒙 ∈ ℝ𝑁

Reconstruction
Image

𝒙 ∈ ℝ𝑁

Measurements

𝒚 ∈ ℂ𝑀

Solving 𝒚 = 𝚽𝒙 + 𝝐

Noise

𝝐 ∈ ℂ𝑀

`

Applications

Fast MR imaging

Low-cost cameras



Motivation

Unsupervised External Learning 
(End2End DNNs)

(+) Exploiting large datasets

(+) Fast inference

(-) Non-adaptivity to test samples

Test-Time Internal Learning 
(Untrained DNNs)

(+) Sample-specific learning

(+) No dataset bias and OOD issues

(-) High-cost sample-wise fitting

Unsupervised (GT-Free) Meta-Learning 
for CS-Based Image Reconstruction



Loss Functions NN Design
Meta-Learning 

Scheme

Framework

Internal

ℱ𝝎

Training data 𝔻 ≔{𝒚𝑗 , 𝚽}𝑗
Model: ℱ𝝎 (initial para. 𝝎)

External

ℱ𝝎

Test Sample 𝒚∗

Meta-trained model:  ℱ𝝎

ℱ𝝎∗
Model AdaptionMeta Learning

Range-nullspace decommission ℂ𝑁 = Range 𝚽H ⨁Null 𝚽

➢ How to suppress measurement noise on Range 𝚽H during training/adaption?
➢ How to learn reconstruction w.r.t. Null 𝚽 ?

Keys



Approach

Improved SURE (iSURE) loss for meta-learning and adaption

iSURE-based GT-free model-agnostic meta-learning (MAML)

Nullspace-consistent model adaptation

Unrolling CNN with bias-tuning



iSURE is a noisy form of SURE to provide robust estimation in Range 𝚽𝐇 .

ℓSURE 𝝎; 𝒚,𝚽 ≔ 𝚽ℱ𝝎 𝒚,𝚽 − 𝒚 2
2 + 2𝜎tr(𝚽+(𝜕ℱ𝝎 𝒚),𝚽 /𝜕𝒚))

ℓiSURE 𝝎;𝒚,𝚽, 𝝐′ ≔ 𝚽ℱ𝝎 𝒚 + 𝝐′,𝚽 − 𝒚 2
2 + 2𝜎tr(𝚽+(𝜕ℱ𝝎 𝒚 + 𝝐′),𝚽 /𝜕𝒚))

Let 𝑱𝝎 be the Jacobian matrix w.r.t. 𝝎, i.e. 𝑱𝝎𝓕𝝎 = 𝜕𝓕𝝎/𝝏𝝎 and 𝒚 = 𝚽𝐱 + 𝝐 .

Assume 𝝐, 𝝐′ ∽ 𝒩 𝟎, 𝝈2𝑰 are independent. Then, we have:

∇𝝎𝔼𝒚,𝝐′ℓ
iSURE 𝝎;𝒚,𝚽, 𝝐′ = 2𝔼𝒚,𝝐′ 𝑱𝝎(ℱ𝝎 𝒚 + 𝝐′, 𝚽 𝚽+(𝚽ℱ𝝎 𝒚 + 𝝐′, 𝚽 − 𝒚 + 𝝐′) .

Theorem 1

• Noise injection mitigates overfitting in GT-free meta-learning and model 

adaption, as well as allows ensemble in learning and inference.

• iSURE allows efficient gradient update, without using MCMC.

The iSure Loss



Unsupervised MAML with Improvement

• Incorporate iSURE into MAML.

• iSURE only measures errors on range space for learning.
• Inner loop with ℒ𝕐

ensem for better addressing the ambiguity on Null 𝚽 .

𝝎𝟎 𝝎
Pre-training

𝒚 𝜱

Dataset 𝔻

ഥ𝝎

ℓiSURE
Sample sets 𝕐

MAML

ℓiSURE
𝝎𝒊ℓensem 𝝎

Inner loop

ℓiSURE

Outer loop 𝝎1

𝝎2

𝝎𝑛

𝓛𝕐
iSURE 𝝎 ≔ 𝔼𝒚∈𝕐,𝝐′∽𝓝 𝟎,𝝈2𝑰 ℓ

iSURE 𝝎;𝒚,𝚽, 𝝐′

𝓛𝕐
ensem 𝝎 ≔ 𝔼𝒚∈𝕐 ℱ𝝎 𝒚,𝚽 − 2𝔼𝝐′′∽𝓝 𝟎,𝝈2𝑰 ℱ𝝎 𝒚 + 𝝐′′,𝚽

2

2

Outer

Inner



Nullspace-Consistent (NC) Adaptation

• Given a test sample (𝒚∗, 𝝍), iSURE only considers reconstruction on
Range 𝝍H and may bring negative effects to prediction on Null 𝝍 .

• NC adaptation mitigates negative effects in Null 𝝍 by pulling the
prediction on Null 𝝍 back, done by the NC loss:

𝓛𝒚∗
NC 𝝎;𝝍,𝝎∗ ≔ (𝐈 − 𝝍𝝍†)(ℱ𝝎 𝒚∗, 𝝍 − ℱ𝝎 𝒚∗, 𝝍 )

2

2
.

𝝎 𝝎∗

𝒚∗ 𝝍

𝝎∗Adaption

𝓛𝒚∗
iSURE + 𝓛𝒚∗

NC

ℱ𝝎∗ 𝒚∗, 𝝍
Ensemble
Inference

𝒙∗

Test sample



• Unroll 𝒙(𝑘) = Prox𝝍 𝒙 𝑘−1 − 𝜌𝚽H 𝚽𝒙 𝑘−1 − 𝒚 and replace the 

proximal operator Prox𝝍 replaced by a sub-CNN.

• An unrolling CNN acts as an iterative shrinkage process. The biases 
play a similar role to the thresholds of shrinkage, which are critical.

• Bias-Tuning: Only adjusting the bias parameters during adaption.

Unrolling CNN with Bias-Tuning



Mean PSNR(dB)/SSIM of MR image reconstruction on MRI150 dataset. 

CS 

Ratio

Noise 

Level

Regularized Unsupervised Internal Unsupervised+Internel Supervised 

ZF

[JMRI-01]

SparseMRI

[MRM-07]

REI

[CVPR-22]

BNN

[ECCV-20]

ASGLD

[CVPR-22]

DDSSL

[ECCV-22]

MetaCS

(Ours)

ADMMNet

[TPAMI-19]
Supervised

20%
0    30.41/.72 35.46/.89 36.07/.90 35.54/.88 36.08/.90 36.73/.92 37.12/.93 37.17/.93 37.58/.94

10    29.18/.64 29.74/.64 33.94/.89 35.54/.88 36.08/.90 33.79/.90 34.34/.91 34.04/.89 34.32/.90

30%
0    33.01/.80 37.72/.91 38.01/.92 37.14/.89 38.11/.93 38.47/.94 39.59/.95 39.84/.93 40.70/.94

10    30.39/.67 30.55/.68 34.04/.89 31.86/.85 32.25/.87 34.51/.91 35.25/.92 34.82/.90 35.18/.91

40%
0    35.14/.85 38.51/.93 39.06/.95 38.63/.91 39.29/.95 41.00/.96 41.24/.97 41.56/.96 42.52/.98

10    30.81/.68 31.24/.69 34.45/.90 33.32/.86 33.71/.87 34.83/.90 35.53/.91 35.31/.91 35.64/.91

50%
0    37.07/.89 39.93/.94 40.95/.95 40.24/.93 41.60/.95 42.53/.97 43.92/.98 43.00/.97 44.09/.98

10    30.87/.66 31.54/.67 35.11/.91 34.39/.89 34.51/.89 35.35/.91 36.23/.93 35.71/.91 36.44/.93

MR Image Reconstruction



Mean PSNR(dB)/SSIM of natural image reconstruction on Set11 dataset.

CS 

Ratio

Noise

Level

Regularized Unsupervised Internel Unsupervised+Internel Supervised 

TVAL3

[COA-13]

L.SURE

[Arxiv-20]

REI

[CVPR-22]

BNN

[ECCV-20]

ASGLD

[CVPR-22]

DDSSL

[ECCV-22]

MetaCS

(Ours)
Supervised

COAST

[TIP-21]

SSLIP

[NIPS-21]

10%
0    22.45/0.38 25.00/.65 22.79/.64 27.49/.83 28.15/.83 27.48/.84 28.02/.84 26.94/.82 28.34/.84 25.02/.75

10    21.02/0.54 23.31/.64 22.26/.66 25.23/.76 26.02/.76 26.10/.78 26.17/.78 25.03/.70 25.81/.78 24.48/.73

25%
0    27.63/0.62 31.31/.90 31.11/.90 32.30/.92 33.06/.92 33.28/.94 33.38/.94 32.44/.92 33.85/.94 30.42/.89

10    24.75/0.67 28.14/.82 28.08/.81 28.67/.84 29.35/.85 29.61/.87 29.71/.87 29.49/.86 29.37/.86 28.71/.85

40%
0    31.21/0.75 33.30/95 35.63/.95 35.71/.95 35.87/.95 37.18/.96 37.25/.96 36.02/.96 36.94/.96 33.73/.93

10    26.66/0.72 28.73/.81 28.99/.81 30.39/.88 31.11/.90 31.58/.88 31.64/.88 31.14/.89 31.16/.89 30.58/.89

Natural Image Reconstruction



Now, let’s dive into the details...



Compressive Sampling (CS) in Imaging

Measurement Matrix 

𝚽 ∈ ℂ𝑀×𝑁

Image

𝒙 ∈ ℝ𝑁

Reconstruction
Image

𝒙 ∈ ℝ𝑁

Measurements

𝒚 ∈ ℂ𝑀

Solving 𝒚 = 𝚽𝒙 + 𝝐

Noise

𝝐 ∈ ℂ𝑀

`

Applications

Fast MR imaging

Low-cost cameras



Ground Truth (GT)-Free Learning Meets CS

•New trend: Training deep neural networks (DNNs) 
for CS-based reconstruction w/o using GT images.

•Two types of GT-free deep learning:

End2End unsupervised learning

EI/REI [1,2]; DDSSL [3]

External learning

Untrained DNNs on test samples

BNN [4], SURE(s) [5], 

Internal Learning

[1] Equivariant imaging: Learning beyond the range space. ICCV 2021.
[2] Robust equivariant imaging: a fully unsupervised framework for learning to image from noisy and partial measurements. CVPR 2022.
[3] Dual-Domain Self-supervised Learning and Model Adaption for Deep Compressive Imaging. ECCV 2022.
[4] Self-supervised Bayesian deep learning for image recovery with applications to compressed sensing. ECCV 2020.
[5] Unsupervised learning with stein’s unbiased risk estimator. arXivpreprint arXiv, 2018.



Motivation

Unsupervised External Learning 
(End2End DNNs)

(+) Exploiting large datasets

(+) Fast inference

(-) Non-adaptivity to test samples

Test-Time Internal Learning 
(Untrained DNNs)

(+) Sample-specific learning

(+) No dataset bias and OOD issues

(-) High-cost sample-wise fitting

Unsupervised (GT-Free) Meta-Learning 
for CS-Based Image Reconstruction



Loss Functions NN Design
Meta-Learning 

Scheme

Framework

Internal

ℱ𝝎

Training data 𝔻 ≔{𝒚𝑗 , 𝚽}𝑗
Model: ℱ𝝎 (initial para. 𝝎)

External

ℱ𝝎

Test Sample 𝒚∗

Meta-trained model:  ℱ𝝎

ℱ𝝎∗
Model AdaptionMeta Learning

Range-nullspace decommission ℂ𝑁 = Range 𝚽H ⨁Null 𝚽

➢ How to suppress measurement noise on Range 𝚽H during training/adaption?
➢ How to learn reconstruction w.r.t. Null 𝚽 ?

Keys



Approach

Improved SURE (iSURE) loss for meta-learning and adaption

iSURE-based GT-free model-agnostic meta-learning (MAML)

Nullspace-consistent model adaptation

Unrolling CNN with bias-tuning



iSURE is a noisy form of SURE to provide robust estimation in Range 𝚽𝐇 .

ℓiSURE 𝝎;𝒚,𝚽, 𝝐′ ≔ 𝚽ℱ𝝎 𝒚 + 𝝐′,𝚽 − 𝒚 2
2 + 2𝜎tr(𝚽+(𝜕ℱ𝝎 𝒚 + 𝝐′),𝚽 /𝜕𝒚))

Let 𝑱𝝎 be the Jacobian matrix w.r.t. 𝝎, i.e. 𝑱𝝎𝓕𝝎 = 𝜕𝓕𝝎/𝝏𝝎 and 𝒚 = 𝚽𝐱 + 𝝐 .

Assume 𝝐, 𝝐′ ∽ 𝒩 𝟎, 𝝈2𝑰 are independent. Then, we have:

∇𝝎𝔼𝒚,𝝐′ℓ
iSURE 𝝎;𝒚,𝚽, 𝝐′ = 2𝔼𝒚,𝝐′ 𝑱𝝎(ℱ𝝎 𝒚 + 𝝐′, 𝚽 𝚽+(𝚽ℱ𝝎 𝒚 + 𝝐′, 𝚽 − 𝒚 + 𝝐′) .

Theorem 1

• Noise injection mitigates overfitting in GT-free meta-learning and model 

adaption, as well as allows ensemble in learning and inference.

• iSURE allows efficient gradient update, without using MCMC.

The iSure Loss



Unsupervised MAML with Improvement

• Incorporate iSURE into MAML.

• iSURE only measures errors on range space for learning.
• Inner loop with ℒ𝕐

ensem for better addressing the ambiguity on Null 𝚽 .

𝝎𝟎 𝝎
Pre-training

𝒚 𝜱

Dataset 𝔻

ഥ𝝎

ℓiSURE
Sample sets 𝕐

MAML

ℓiSURE
𝝎𝒊ℓensem 𝝎

Inner loop

ℓiSURE

Outer loop 𝝎1

𝝎2

𝝎𝑛

𝓛𝕐
iSURE 𝝎 ≔ 𝔼𝒚∈𝕐,𝝐′∽𝓝 𝟎,𝝈2𝑰 ℓ

iSURE 𝝎;𝒚,𝚽, 𝝐′

𝓛𝕐
ensem 𝝎 ≔ 𝔼𝒚∈𝕐 ℱ𝝎 𝒚,𝚽 − 2𝔼𝝐′′∽𝓝 𝟎,𝝈2𝑰 ℱ𝝎 𝒚 + 𝝐′′,𝚽

2

2

Outer

Inner



Nullspace-Consistent (NC) Adaptation

• Given a test sample (𝒚∗, 𝝍), iSURE only considers reconstruction on
Range 𝝍H and may bring negative effects to prediction on Null 𝝍 .

• NC adaptation mitigates negative effects in Null 𝝍 by pulling the
prediction on Null 𝝍 back, done by the NC loss:

𝓛𝒚∗
NC 𝝎;𝝍,𝝎∗ ≔ (𝐈 − 𝝍𝝍†)(ℱ𝝎 𝒚∗, 𝝍 − ℱ𝝎 𝒚∗, 𝝍 )

2

2
.

𝝎 𝝎∗

𝒚∗ 𝝍

𝝎∗Adaption

𝓛𝒚∗
iSURE + 𝓛𝒚∗

NC

ℱ𝝎∗ 𝒚∗, 𝝍
Ensemble
Inference

𝒙∗

Test sample



• Unroll 𝒙(𝑘) = Prox𝝍 𝒙 𝑘−1 − 𝜌𝚽H 𝚽𝒙 𝑘−1 − 𝒚 and replace the 

proximal operator Prox𝝍 replaced by a sub-CNN.

• An unrolling CNN acts as an iterative shrinkage process. The biases 
play a similar role to the thresholds of shrinkage, which are critical.

• Bias-Tuning: Only adjusting the bias parameters during adaption.

Unrolling CNN with Bias-Tuning



Mean PSNR(dB)/SSIM of MR image reconstruction on MRI150 dataset. 

CS 

Ratio

Noise 

Level

Regularized Unsupervised Internal Unsupervised+Internel Supervised 

ZF

[JMRI-01]

SparseMRI

[MRM-07]

REI

[CVPR-22]

BNN

[ECCV-20]

ASGLD

[CVPR-22]

DDSSL

[ECCV-22]

MetaCS

(Ours)

ADMMNet

[TPAMI-19]
Supervised

20%
0    30.41/.72 35.46/.89 36.07/.90 35.54/.88 36.08/.90 36.73/.92 37.12/.93 37.17/.93 37.58/.94

10    29.18/.64 29.74/.64 33.94/.89 35.54/.88 36.08/.90 33.79/.90 34.34/.91 34.04/.89 34.32/.90

30%
0    33.01/.80 37.72/.91 38.01/.92 37.14/.89 38.11/.93 38.47/.94 39.59/.95 39.84/.93 40.70/.94

10    30.39/.67 30.55/.68 34.04/.89 31.86/.85 32.25/.87 34.51/.91 35.25/.92 34.82/.90 35.18/.91

40%
0    35.14/.85 38.51/.93 39.06/.95 38.63/.91 39.29/.95 41.00/.96 41.24/.97 41.56/.96 42.52/.98

10    30.81/.68 31.24/.69 34.45/.90 33.32/.86 33.71/.87 34.83/.90 35.53/.91 35.31/.91 35.64/.91

50%
0    37.07/.89 39.93/.94 40.95/.95 40.24/.93 41.60/.95 42.53/.97 43.92/.98 43.00/.97 44.09/.98

10    30.87/.66 31.54/.67 35.11/.91 34.39/.89 34.51/.89 35.35/.91 36.23/.93 35.71/.91 36.44/.93

MR Image Reconstruction



Mean PSNR(dB)/SSIM of natural image reconstruction on Set11 dataset.

CS 

Ratio

Noise

Level

Regularized Unsupervised Internel Unsupervised+Internel Supervised 

TVAL3

[COA-13]

L.SURE

[Arxiv-20]

REI

[CVPR-22]

BNN

[ECCV-20]

ASGLD

[CVPR-22]

DDSSL

[ECCV-22]

MetaCS

(Ours)
Supervised

COAST

[TIP-21]

SSLIP

[NIPS-21]

10%
0    22.45/0.38 25.00/.65 22.79/.64 27.49/.83 28.15/.83 27.48/.84 28.02/.84 26.94/.82 28.34/.84 25.02/.75

10    21.02/0.54 23.31/.64 22.26/.66 25.23/.76 26.02/.76 26.10/.78 26.17/.78 25.03/.70 25.81/.78 24.48/.73

25%
0    27.63/0.62 31.31/.90 31.11/.90 32.30/.92 33.06/.92 33.28/.94 33.38/.94 32.44/.92 33.85/.94 30.42/.89

10    24.75/0.67 28.14/.82 28.08/.81 28.67/.84 29.35/.85 29.61/.87 29.71/.87 29.49/.86 29.37/.86 28.71/.85

40%
0    31.21/0.75 33.30/95 35.63/.95 35.71/.95 35.87/.95 37.18/.96 37.25/.96 36.02/.96 36.94/.96 33.73/.93

10    26.66/0.72 28.73/.81 28.99/.81 30.39/.88 31.11/.90 31.58/.88 31.64/.88 31.14/.89 31.16/.89 30.58/.89

Natural Image Reconstruction



Comparison on Computational Complexity

Compared to the latest adaption method DDSSL, our MetaCS takes only around 1/7 time！

Running time (minutes) of different methods on Set11, tested on a TITAN RTX GPU.

COAST SSLIP LDAMP-SURE ASGLD DDSSL
MetaCS

(whole)

MetaCS

(bias-only)

1.12 0.67 0.38 2.19 0.67 0.3756 0.0013

Comparison in number of model parameters (M).

Our bias-tuning scheme significantly reduces the number of parameters being adapted.  

Method LSURE BNN ASGLD DDSSL MetaCS

r=40% 0.45 282 178 5.72 0.89



Ablation Studies

Method
Noiseless MR Imaging Noisy MR Imaging

r = 1/5 1/4 1/3 r = 1/5 1/4 1/3

iSure → gSURE 29.13 32.57 34.29 28.56 29.17 29.14 

w/o Meta-Learn 32.93 33.97 35.68 29.52 30.03 30.34 

Standard MAML 32.86 34.01 35.73 29.63 30.08 30.42 

w/o Adaption 33.63 34.40 35.89 29.60 30.78 31.36 

w/o NC 33.71 34.65 36.40 30.41 31.01 31.66 

All weights 34.02 34.82 36.58 30.60 31.19 31.74 

Gain-tuning 33.68 34.58 36.19 30.35 30.83 31.37 

MetaCS 34.00 34.85 36.54 30.56 31.17 31.79 

Each component of our approach has noticeable contribution to the performance.



Effectiveness of Meta-Learning & Adaption

Meta-learning leads to faster and more effective model adaptation.

Test Mask
Train=Test Gauss, r=1/4

REI MetaCS REI MetaCS
Gauss, r=1/3 36.72 37.87 36.38 37.8
Gauss, r=1/5 34.04 35.52 33.63 35.47
Radial, r=1/4 33.15 34.46 32.62 34.84

Adaption for Unseen Measurement Matrices



Thanks

See more at https://csyhquan.github.io

https://csyhquan.github.io/

