

WED-PM-318

Speaker: Hyunjun Choi

Balanced Energy Regularization Loss for Out-of-distribution Detection

Hyunjun Choi^{1,2}, Hawook Jeong², Jin Young Choi¹

numb7315@snu.ac.kr hawook@rideflux.com jychoi@snu.ac.kr ¹ASRI, ECE., Seoul National University, ²RideFlux Inc

Perception and Intelligence Laboratory

- "Observer" methods
 - model the prediction uncertainty of a pre-trained network, without modifying its architecture or parameters
 - Hendrycks and Gimpel,2016; Liang et al., 2017; Lee et al., 2018
 - Baseline for OOD : maximum softmax score (MSP)
 - ODIN
 - Mahalanobis distance based OOD
- "Mutators" methods
 - modify the network structure or loss, and depend on training its parameters to provide a confidence measure
 - Hendrycks et al., 2018; Hsu et al., 2020
 - Deep anomaly detection with outlier exposure
 - Generalized odin: Detecting out-of distribution image without learning from out-ofdistribution data

- Using additional data (auxiliary dataset)
 - Use auxiliary data as outlier data has shown promising performance
 - Do not overlap with classes of OOD test data, in-distribution data
 - Image classification task
 - Deep anomaly detection with outlier exposure (OE) (ICLR 2018)
 - Energy-based OOD detection (EnergyOE) (Neurips 2020)
 - Semantic segmentation task
 - Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation (Meta OOD) (ICCV 2021)
 - Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes (PEBAL) (ECCV 2022)

- Deep anomaly detection with outlier exposure (OE) (ICLR 2018)
 - Using auxiliary data as outlier data in training for the first time
 - Superior performance compared to baseline (MSP)
 - Leverage the regularization loss for outlier data
 - -Fine-tuning (main theme)
 - Proposed loss : Outlier exposure loss (OE loss)

$$\min_{\theta} \mathbb{E}_{(\mathbf{x},y)\sim D_{in}^{train}} [-\log F_y(\mathbf{x})] + \lambda L_{OE},$$
$$L_{OE} = \mathbb{E}_{\mathbf{x}_{out}\sim D_{out}^{train}} [H(\mathbf{u};F(\mathbf{x}))],$$

H: cross entropy loss u: uniform distribution

Meta OOD (ICCV 2021) : Using OE loss in semantic segmentation OOD task

(1)

• Energy-based OOD detection (EnergyOE) (Neurips 2020)

Instead of MSP, Energy score is proposed

Leverage the energy regularization loss in fine-tuning

Proposed loss : Energy regularization loss

$$L_{energy} = L_{in,hinge} + L_{out,hinge}$$

= $\mathbb{E}_{(\mathbf{x}_{in},y)\sim D_{in}^{train}} [(\max(0, E(\mathbf{x}) - m_{in}))^2]$ (2)
+ $\mathbb{E}_{\mathbf{x}_{out}\sim D_{out}^{train}} [(\max(0, E(\mathbf{x}) - m_{out}))^2],$

$$E(\mathbf{x}; f) = -T \cdot \log\left(\sum_{j=1}^{K} e^{f_j(\mathbf{x})}\right)/T$$

T=1 fixed, double hinge loss for energy

PEBAL (ECCV 2022): Using energy regularization loss in semantic segmentation OOD task

in semantic segmentation OOD task

Previous auxiliary data based fine-tuning methods

$$L_{OE} = \mathbb{E}_{\mathbf{x}_{out} \sim D_{out}^{train}} [H(\mathbf{u}; F(\mathbf{x}))],$$

Deep anomaly detection with outlier exposure (OE) (ICLR 2018)

$$\begin{split} L_{energy} &= L_{in,hinge} + L_{out,hinge} \\ &= \mathbb{E}_{(\mathbf{x}_{in},y) \sim D_{in}^{train}} \left[\left(\max(0, E(\mathbf{x}) - m_{in}) \right)^2 \right] \\ &+ \mathbb{E}_{\mathbf{x}_{out} \sim D_{out}^{train}} \left[\left(\max(0, E(\mathbf{x}) - m_{out}) \right)^2 \right], \end{split}$$
 Energy-based OOD detection (EnergyOE) (Neurips 2020)

Previous approach

: Equal regularization loss for all x_{out} data

why x_{out} data should have different regularization loss?

OOD Inference result on pretrained network

: x_{out} data tends to have an imbalance in the distribution of the auxiliary OOD data across classes

$$L_{energy} = L_{in,hinge} + L_{out,hinge}$$

= $\mathbb{E}_{(\mathbf{x}_{in},y)\sim D_{in}^{train}} [(\max(0, E(\mathbf{x}) - m_{in}))^2]$
+ $\mathbb{E}_{\mathbf{x}_{out}\sim D_{out}^{train}} [(\max(0, E(\mathbf{x}) - m_{out}))^2],$

$$L_{energy,bal} = L_{in,hinge} + L_{out,bal}$$

= $\mathbb{E}_{(\mathbf{x}_{in},y)\sim D_{in}^{train}} [(\max(0, E(\mathbf{x}) - m_{in}))^2]$
+ $\mathbb{E}_{\mathbf{x}\sim D_{out}^{train}} [(\max(0, E(\mathbf{x}) - m_{out} - \alpha Z_{\gamma}))^2 Z_{\gamma}],$

Different regularization loss for x_{out} data

Key method

$$L_{energy,bal} = L_{in,hinge} + L_{out,bal}$$

= $\mathbb{E}_{(\mathbf{x}_{in},y)\sim D_{in}^{train}} [(\max(0, E(\mathbf{x}) - m_{in}))^2]$
+ $\mathbb{E}_{\mathbf{x}\sim D_{out}^{train}} [(\max(0, E(\mathbf{x}) - m_{out} - \alpha Z_{\gamma}))^2 Z_{\gamma}]$

Posterior probability (softmax output of network)

$$P(y=i|\mathbf{x},o) = \frac{e^{f_i(\mathbf{x})}}{\sum_{j=1}^{K} e^{f_j(\mathbf{x})}}.$$

Z term: measure whether a sample is of the majority or minority class.

$$Z = \sum_{j=1}^{K} P(y=j|\mathbf{x},o)P(y=j|o).$$

Prior probability (OOD inference result on pretrained network)

$$P(y=i|o) = \frac{N_i}{N_1 + N_2 + \dots + N_K}.$$

Extended version of Z: By power (gamma) on prior probability

$$P_{\gamma}(y=i|o) = L^{1}norm\{P^{\gamma}(y=i|o)\}$$
$$Z_{\gamma} = \sum_{j=1}^{K} P(y=j|\mathbf{x},o)P_{\gamma}(y=j|o),$$

JUNE 18-22, 2023

Algorithm 1: Balanced Energy Learning

Input: *f*:Pre-trained model **Data:** D_{in} : in-distribution training set, D_{out} :OOD training set Step1: Inference on OOD training set Load the weight of pre-trained model *f*; $N_i \leftarrow 0$, for all j=1 to K for t = 1 to T_1 do Sample a mini batch $D_{mini,o}$ from D_{out} Inference on the mini batch $f(D_{mini,o})$ for j = 1 to K do $n_j \leftarrow \operatorname{count}(\max_i f(D_{mini,o}), j)$ $N_j \leftarrow N_j + n_j$ Compute prior probability of OOD as Eq. (3). Step2: Fine-tuning the pre-trained model for $t = T_1 + 1$ to T_2 do Sample mini-batches $D_{mini,i}$ and $D_{mini,o}$

from D_{in} and D_{out} , respectively. Update unfrozen classification layers of f

by minimizing Eq. (8).

Step1: Prior probability calculation (OOD inference result on pretrained network)

Step2: Finetuning the pretrained model based on the balanced energy regularization loss

• OOD detection in semantic segmentation

• OOD detection in Long-tailed Image Classification

• OOD detection in Image Classification

• OOD in semantic segmentation

- OOD in semantic segmentation
 - Fishyscapes test sets

	ES Lost & Found ES Statio							
Method	R^{\dagger}	E^{\dagger}	O^{\dagger}	FS Lost & Found		F9 3	static	
	10			AP↑	FPR↓	AP↑	FPR↓	
MSP [16]	X	×	X	1.77	44.85	12.88	39.83	
En [†] [17]	×	×	×	2.93	44.83	15.41	39.75	
kNN [†] [3]	×	×	×	3.55	30.02	44.03	20.25	
SML [19]	×	×	×	31.05	21.52	53.11	19.64	
BD [†] [36]	~	×	×	9.81	38.46	48.70	15.05	
DSN [†] [3]	×	1	×	3.01	32.90	40.86	21.29	
DMN [†] [3]	×	1	×	4.25	47.15	62.14	17.43	
IR [†] [28]	×	1	×	5.70	48.05	29.60	27.13	
DLR [†] [3]	×	1	1	4.65	24.36	57.16	13.39	
SB [†] [10]	×	1	1	43.22	15.79	72.59	18.75	
DODH [†] [2]	1	1	1	31.31	19.02	96.76	0.29	
OTVC [†]	1	×	1	10.29	22.11	45.00	19.40	
DD [†] [33]	1	×	1	34.28	47.43	31.30	84.60	
DH [†] [12]	1	×	1	47.06	3.97	80.23	5.95	
PEBAL [41]	1	X	1	44.17	7.58	92.38	1.73	
Ours	1	×	1	51.83	3.76	94.62	0.99	

 R^{\dagger} : Re-training, E^{\dagger} : Extra Network, O^{\dagger} : OoD Data.

JUNE 18-22, 2023

- OOD in semantic segmentation
 - Fishyscapes validation sets
 - Road Anomaly test set

Method	FS Lost & Found		FS Static			Road Anomaly			
Method	AUC↑	AP↑	FPR↓	AUC↑	AP↑	FPR↓	AUC↑	AP↑	FPR↓
MSP [16]	89.29	4.59	40.59	92.36	19.09	23.99	67.53	15.72	71.38
Max Logit [16]	93.41	14.59	42.21	95.66	38.64	18.26	72.78	18.98	70.48
Entropy [17]	90.82	10.36	40.34	93.14	26.77	23.31	68.80	16.97	71.10
Energy [29]	93.72	16.05	41.78	95.90	41.68	17.78	73.35	19.54	70.17
Mahalanobis [24]	96.75	56.57	11.24	96.76	27.37	11.7	62.85	14.37	81.09
Meta-OOD [5]	93.06	41.31	37.69	97.56	72.91	13.57	-	-	-
Synboost [10]	96.21	60.58	31.02	95.87	66.44	25.59	81.91	38.21	64.75
SML [19]	94.97	22.74	33.49	97.25	66.72	12.14	75.16	17.52	70.70
Deep Gambler [31]	97.82	31.34	10.16	98.88	84.57	3.39	78.29	23.26	65.12
PEBAL [41]	98.96	58.81	4.76	99.61	92.08	1.52	87.63	45.10	44.58
Balanced Energy PEBAL (Ours)	<u>99.03</u>	67.07	2.93	99.55	92.49	1.17	88.36	43.58	41.54
EnergyOE [29]	98.14	45.61	8.21	99.32	89.12	2.62	83.32	32.59	53.01
Balanced EnergyOE (Ours)	98.42	54.58	6.70	99.43	91.77	1.63	85.50	34.90	46.60

OOD in Long-tailed Image Classification
> CIFAR10

Dataset	Method	AUC↑	AP↑	FPR↓						
	OE (tune)	87.98	80.05	45.54						
Texture	EnergyOE (tune)	95.53	92.93	23.26						
	Ours	95.69	92.38	21.26			(h.)			
	OE (tune)	92.10	95.52	27.37			(0)			
SVHN	EnergyOE (tune)	96.63	98.46	14.52	Dataset	Method	AUC↑	AP↑	FPR↓	ACC↑
	Ours	97.74	98.89	9.87		MSP [17](ST)	70.96	69.35	67.37	69.83
	OE (tune)	78.24	76.35	65.28		Energy [29](ST)	75.93	72.91	61.00	69.83
CIFAR100	EnergyOE (tune)	84.44	84.63	59.92		OECC [38]	87.28	86.29	45.24	60.16
	Ours	85.20	84.98	57.95		EnergyOE [29](scratch)	89.31	88.92	40.88	74.68
Tiny	OE (tune)	81.47	75.79	58.68	Average	OE [18](scratch)	89.77	87.25	34.65	73.84
ImageNet	EnergyOE (tune)	88.40	84.95	45.17		PASCL [43]	90.99	89.24	33.36	77.08
imagervet	Ours	88.92	84.98	42.38		Open-Sampling [45]	90.24	85.44	31.00	77.06
	OE (tune)	86.19	85.85	54.49		OE[18](tune)	85.04	84 57	51.74	69.79
LSUN	EnergyOE (tune)	94.00	93.70	26.96		EnergyOE [29](tune)	91.92	91.97	33.79	74 53
	Ours	94.48	93.15	23.88		Ours	92.56	01.04	30.60	76.22
	OE (tune)	84.27	93.84	59.08		Ours+AdiLogit [34]	92.56	01.04	30.60	81 37
Places365	EnergyOE (tune)	92.51	97.14	32.88		Ours+AujLogit [54]	92.50	91.94	30.00	01.57
	Ours	93.35	97.23	28.25						
	OE (tune)	85.04	84.57	51.74						
Average	EnergyOE (tune)	91.92	91.97	33.79						
	Ours	92.56	91.94	30.60						

(a)

JUNE 18-22. 2023

OOD in Long-tailed Image Classification ➢ CIFAR100

Dataset	Method	AUC↑	AP↑	FPR↓						
	OE (tune)	66.29	51.98	84.04						
Texture	EnergyOE (tune)	79.56	70.88	68.60						
	Ours	82.10	73.09	64.19		,	(b)			
	OE (tune)	74.93	85.41	63.94			(0)			
SVHN	EnergyOE (tune)	86.19	91.74	42.27	Dataset	Method	AUC↑	AP↑	FPR↓	ACC↑
	Ours	88.66	92.88	33.79		MSP [17](ST)	60.26	57.58	84.00	38.74
	OE (tune)	59.44	56.34	84.70		Energy [29](ST)	63.22	59.06	81.12	38.74
CIFAR10	EnergyOE (tune)	61.15	56.66	82.60		OECC [38]	70.38	66.87	73.15	32.93
	Ours	59.40	54.97	85.16		EnergyOE [29](scratch)	71.10	67.23	71.78	39.05
Tiny	OE (tune)	66.24	51.07	80.04	Average	OE [18](scratch)	72.91	67.16	68.89	39.04
ImageNet	EnergyOE (tune)	70.78	55.90	74.43		PASCL [43]	73.32	67.18	67.44	43.10
inageivet	Ours	71.42	56.52	74.22		Open-Sampling [45]	74.46	69.49	66.82	39.86
	OE (tune)	73.46	59.07	73.05		OF [18](tune)	68.68	64.83	76 73	38.03
LSUN	EnergyOE (tune)	81.61	69.16	57.37		EnergyOE [29](tune)	76.40	72.24	64 54	40.65
	Ours	83.83	71.23	52.04		Ours	77.75	73.10	61 15	41.05
	OE (tune)	71.70	85.08	74.62		Ours AdiLogit [24]	77.75	73.10	61.15	41.05
Places365	EnergyOE (tune)	79.12	89.09	61.96		Ours+AujLogit [34]	11.15	75.10	01.15	45.00
	Ours	81.10	89.94	57.52						
	OE (tune)	68.68	64.83	76.73						
Average	EnergyOE (tune)	76.40	72.24	64.54						
	Ours	77.75	73.10	61.15						

(a)

OOD in Image Classification
CIFAR10, CIFAR100

Dataset	Method	AUC↑	AP↑	FPR↓	ACC↑
	MSP [17](ST)	89.25	86.63	31.32	93.69
	Energy [29](ST)	91.55	89.88	29.07	93.69
Average	OECC [38]	96.33	95.38	14.36	91.57
	OE [18](tune)	95.68	95.36	18.20	93.37
	EnergyOE [29](tune)	96.77	96.72	14.82	93.30
	Ours	96.83	96.70	14.51	93.00
		(b)			
Dataset	Method	AUC↑	AP↑	FPR↓	ACC↑
	MSP [17](ST)	76.14	71.29	62.78	75.70
	Energy [29](ST)	79.78	73.31	57.59	75.70
Average	OECC [38]	84.03	77.94	45.26	69.55
	OE [18](tune)	82.76	77.93	51.72	74.33
	EnergyOE [29](tune)	85.84	80.99	43.02	74.95
	Ours	85.85	80.91	42.93	74.83

(a)

- For OOD detection, we focus on the fine-tuning methodology using auxiliary data
- we propose a new balanced energy regularization loss
- The main idea of our loss is to apply large regularization to auxiliary samples of majority classes, compared to those of minority
- We show the effectiveness of our novel loss through extensive experiments on semantic segmentation, long-tailed image classification, and image classification datasets

