

Private Image Generation with Dual-Purpose Auxiliary Classifier

Chen Chen, Daochang Liu, Siqi Ma, Surya Nepal, Chang Xu Tag: THU-AM-369

Motivation

• **Privacy-preserving image generation** has been important for segments such as medical domains that have sensitive and limited data.

Research Gap

 The benefits of guaranteed privacy come at substantial costs of generated images' quality and utility due to the privacy budget constraints.

Figure 3. Image generated at privacy budget $\epsilon = 10$ for MNIST (Left) and F-MNIST (Right) by various methods.

Figure 4. Image generated at privacy budget $\epsilon = 10$ for CelebA by various methods conditioned on gender. Left: Female. Right: Male.

Research Gap

- The commonly used utility metric is the Standard Utility: gen2real accuracy (g2r%), while the Reversed Utility: real2gen accuracy (r2g%) is neglected.
- No work so far has investigated whether incorporating utility measures in the model design would result in better utility performance under the given privacy budget.

 Incorporate a dual-purpose auxiliary classifier (DPAC) into the training of differentially private GAN (DP-GAN), making it a 3-player game.

 The DPAC alternates between learning from real and fake data sequentially, incorporates both g2r% and r2g% in the model design and accelerates Generator convergence.

• Quality (measured by IS and FID)

	MNIST		F-MNIST		CelebA	
Method	IS	FID	IS	FID	IS	FID
PATE-GAN [25]	1.46	253.55	2.35	229.25	-	-
DP-CGAN [36]	-	179.20	-	243.80	-	-
G-PATE [30]	5.16	150.62	4.33	171.90	1.37	350.92
DataLens [37]	5.78	137.50	4.58	167.70	1.42	320.84
DP-MERF [22]	-	121.40	-	110.40	-	-
GS-WGAN [8]	9.23	61.34	5.32	131.34	1.85	297.35
DPSinkhorn [6]	-	55.56	-	129.40	-	168.40
Ours	9.71	54.06	6.60	90.77	1.90	139.99

Table 1. Comparing IS \uparrow and FID \downarrow on various datasets.

• Utility (measured by downstream classification accuracy: gen2real & real2gen)

	MNIST		F-MNIST		CelebA	
Method	MLP	CNN	MLP	CNN	MLP	CNN
DP-CGAN [36]	0.60	0.63	0.50	0.46	-	-
G-PATE [30]	-	0.81	-	0.69	-	0.71
DataLens [37]	-	0.81	-	0.71	-	0.73
DP-MERF [22]	0.81	0.82	0.71	0.73	-	-
GS-WGAN [8]	0.79	0.80	0.65	0.65	0.68	0.66
DPSinkhorn [6]	0.80	0.83	0.73	0.71	0.76	0.76
Ours	0.85	0.88	0.75	0.73	0.80	0.85

Table 2. Comparing gen2real accuracy \uparrow on various datasets.

	MNIST		F-MNIST		CelebA	
Method ↑	MLP	CNN	MLP	CNN	MLP	CNN
GS-WGAN [8]	0.99	0.99	0.85	0.85	0.66	0.60
Ours	1.00	1.00	0.97	0.98	0.99	0.98

Table 3. Comparing real2gen accuracy \uparrow on various datasets.

Motivation

- Machine learning applications have achieved success in many domains.
- However, this might not be the case for domains whose real data is too rare or contains sensitive information.
- Generative Adversarial Networks (GANs) have been a successful data augmenter and privacy protector since their ability to generate synthetic images that can be difficult to tell from the real ones.
- However, GANs are subject to model inversion attacks and membership inference attacks in both white-box and black-box settings, thus may leak sensitive information about input data.

Motivation

- Recent work: DPGANs have integrated the state-of-the-art (SOTA) privacy protection framework called differential privacy (DP) into GAN training, to provide GAN methods with rigorous privacy guarantee.
- However, the benefits of guaranteed privacy comes with substantial costs of generated images' quality and utility.

Background: DP

- Differential Privacy (DP) is a strong technique for privacy guarantees.
- We define datasets \mathcal{D} and \mathcal{D}' that only differ in one entry as adjacent datasets.
- For a general training algorithm $f(\cdot)$, its \mathcal{L}_2 sensitivity on adjacent datasets \mathcal{D} and \mathcal{D}' is

$$\Delta_2 f = max_{\mathcal{D},\mathcal{D}'} ||f(\mathcal{D}) - f(\mathcal{D}')||_2$$

• Gaussian sanitization mechanism $\mathcal{M}(\cdot)$ with range \mathcal{R} simply adds Gaussian noise to $f(\cdot)$ based on its sensitivity:

$$\mathcal{M}(\mathcal{D}) = f(\mathcal{D}) + \mathcal{N}(0, (\sigma \Delta_2 f)^2)$$

• To adopt DP in GAN training, we clip the gradient norm of the generator to bound its sensitivity, then correspondingly adding Gaussian noise to be differentially private.

Background: DP

• This allows the mechanism to be (ε, δ) -DP, where the following equation would hold for any subsets of the mechanism's output $S \subseteq \mathcal{R}$ with δ probability of failing the DP and privacy budget ε .

$$Pr[\mathcal{M}(\mathcal{D}) \subseteq \mathcal{S}] \leq e^{\epsilon} Pr[\mathcal{M}(\mathcal{D}') \subseteq \mathcal{S}] + \delta.$$

• Privacy accountant computes the privacy cost at each access to the training data and accumulates this cost as the training progresses, acting as a stopping criteria.

Research Gap

- No work so far has investigated whether incorporating utility measure in the model design would result in better utility performance under the given privacy budget.
 - Can we incorporate utility measure in the model design? Yes!
 - How? By adding an auxiliary classifier network to common GAN architecture (i.e., changing GAN from a 2-player game to a 3-player game).
- The commonly used utility metric is the Standard Utility: gen2real accuracy (g2r%), while the Reversed Utility: real2gen accuracy (r2g%) is neglected.
 - Why r2g% matters? It evaluates the outputs' generalizability.
 - Can we incorporate it in the model design as well? Yes!
- The gained privacy largely sacrifices output quality and utility.
 - Can we do better? Yes, use sequential training strategy for faster convergence!

 Adds a dual-purpose auxiliary classifier (DPAC) into the training of differentially private GAN (DP-GAN), making it a 3-player game.

• When using fake data to train C:

 $\min_{G} \max_{D} \min_{C} V(G, D, C)$ $= -\beta \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathcal{P}_{\tilde{\boldsymbol{x}}}} [D(G(\boldsymbol{z}, \boldsymbol{y}))] + \beta \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [D(\boldsymbol{x})]$ $- (1 - \beta) \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathcal{P}_{\tilde{\boldsymbol{x}}}} [C(G(\boldsymbol{z}, \boldsymbol{y}), \boldsymbol{y})] \quad (4)$

When using real data to train C:

•

 $\min_{G} \max_{D} \min_{C} V(G, D, C)$ $= -\beta \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathcal{P}_{\tilde{\boldsymbol{x}}}} [D(G(\boldsymbol{z}, \boldsymbol{y}))] + \beta \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [D(\boldsymbol{x})]$ $- (1 - \beta) \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathcal{P}_{\tilde{\boldsymbol{x}}}} [C'(G(\boldsymbol{z}, \boldsymbol{y}), \boldsymbol{y})] - \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [C(\boldsymbol{x}, \boldsymbol{y})]$ (10)

 The DPAC alternates between learning from real and fake data sequentially, incorporates both g2r% and r2g% in the model design and accelerates Generator convergence.

• Quality (measured by IS and FID)

	MNIST		F-MNIST		CelebA	
Method	IS	FID	IS	FID	IS	FID
PATE-GAN [25]	1.46	253.55	2.35	229.25	-	-
DP-CGAN [36]	-	179.20	-	243.80	-	-
G-PATE [30]	5.16	150.62	4.33	171.90	1.37	350.92
DataLens [37]	5.78	137.50	4.58	167.70	1.42	320.84
DP-MERF [22]	-	121.40	-	110.40	-	-
GS-WGAN [8]	9.23	61.34	5.32	131.34	1.85	297.35
DPSinkhorn [6]	-	55.56	-	129.40	-	168.40
Ours	9.71	54.06	6.60	90.77	1.90	139.99

Table 1. Comparing IS \uparrow and FID \downarrow on various datasets.

• Utility (measured by downstream classification accuracy: gen2real & real2gen)

	MNIST		F-MNIST		CelebA	
Method	MLP	CNN	MLP	CNN	MLP	CNN
DP-CGAN [36]	0.60	0.63	0.50	0.46	-	-
G-PATE [30]	-	0.81	-	0.69	-	0.71
DataLens [37]	-	0.81	-	0.71	-	0.73
DP-MERF [22]	0.81	0.82	0.71	0.73	-	-
GS-WGAN [8]	0.79	0.80	0.65	0.65	0.68	0.66
DPSinkhorn [6]	0.80	0.83	0.73	0.71	0.76	0.76
Ours	0.85	0.88	0.75	0.73	0.80	0.85

Table 2. Comparing gen2real accuracy \uparrow on various datasets.

	MNIST		F-MNIST		CelebA	
Method ↑	MLP	CNN	MLP	CNN	MLP	CNN
GS-WGAN [8]	0.99	0.99	0.85	0.85	0.66	0.60
Ours	1.00	1.00	0.97	0.98	0.99	0.98

Table 3. Comparing real2gen accuracy \uparrow on various datasets.

• Ablation studies

			gen2real ↑		real2	gen ↑
Method	IS ↑	$FID\downarrow$	MLP	CNN	MLP	CNN
Baseline	5.32	131.24	0.65	0.65	0.85	0.85
w/o g2r	6.33	88.17	0.73	0.68	0.94	0.95
w/o r2g	6.47	86.91	0.74	0.71	0.92	0.92
w/o seq	4.91	128.25	0.65	0.64	0.88	0.77
w/o init	6.56	101.69	0.72	0.65	0.97	0.95
Full	6.60	90.77	0.75	0.73	0.97	0.98

Table 4. Ablation studies.

Conclusions

- The "reversed utility" is identified as a beneficial part of an improved design of private GANs.
- A dual-purpose auxiliary classifier is developed in alignment with both the standard and reversed utility.
- The classifier is trained with strategies like sequentialization to accelerate the convergence of generator.