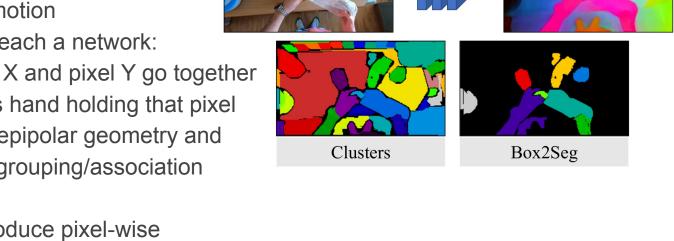


MOVES: Manipulated Objects in Video Enable Segmentation

Richard E.L. Higgins and David F. Fouhey University of Michigan {relh, fouhey}@umich.edu

MOVES 1-minute Overview

- People moving objects creates motion that disagrees with camera motion
- We use motion cues to teach a network:
 - **Grouping:** do pixel X and pixel Y go together Ο
 - **Association:** is this hand holding that pixel Ο
- At training time, we use epipolar geometry and optical flow to train with grouping/association pseudolabels
- At inference time, we produce pixel-wise embeddings and held-object association maps from a single RGB image



Image

MOVES Features

Teaser

- Here we can see someone making breakfast, we:
 - Understand the bag is an object
 - Recognize a hand is holding it
 - Understand background objects

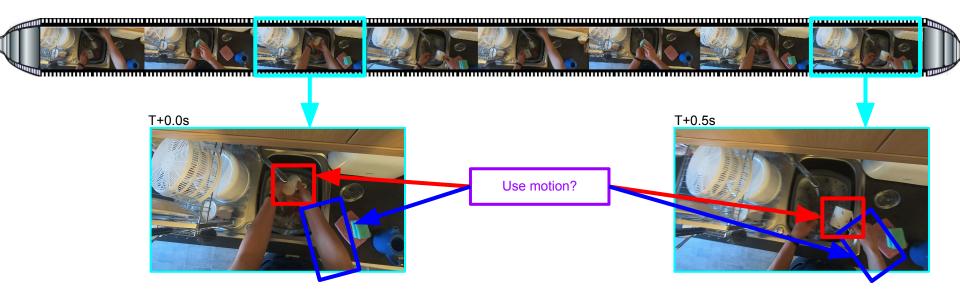
Teaser

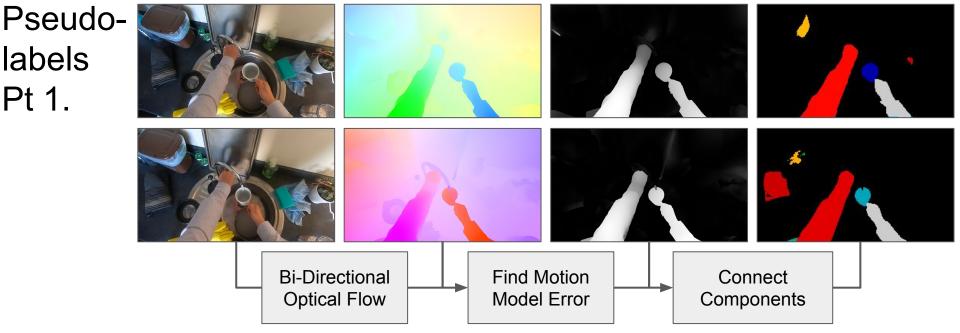
- Here we can see someone making breakfast, we:
 - Understand the bag is an object
 - Recognize a hand is holding it
 - Understand background objects
- We want a system that does the same:
 - Groups held objects
 - Recognizes contact between hands and objects
 - Groups non-held objects
- Discriminative training on simple pseudolabels works pretty well

Box2Seg

Problem

How can we use motion cues generated by manipulation to segment and associate hands and held-objects in egocentric video?



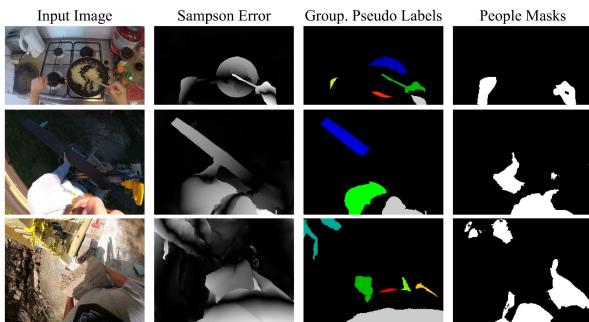


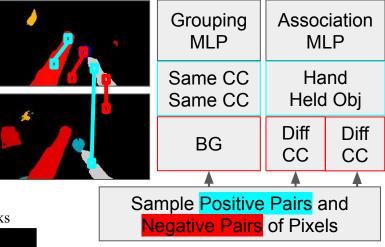
- 1. Choose video frames offset ~0.5s
- 2. Run bi-directional optical flow
- 3. Find cyclic correspondences in this flow
- 4. Use RANSAC to estimate a fundamental matrix between the two frames
- 5. Ideally, person and held-object motion are outliers, disagreeing with this motion model
- 6. Calculate sampson epipolar error for all correspondences
- 7. Run connected components on error regions above threshold

Pseudolabels Pt 2.

Grouping. $G_{i,j}$ is: positive if i, j are in the same foreground connected component; negative if i is in the foreground and j is not; and unknown otherwise.

Hand Association. We use the the Ternaus [19] person binary segmentation system, assuming the data is egocentric and so the visible people are hands. The association $A_{i,j}$ is: positive if i, j are in the same connected component and have differing person predictions; negative if i, j are in different components; and unknown otherwise.





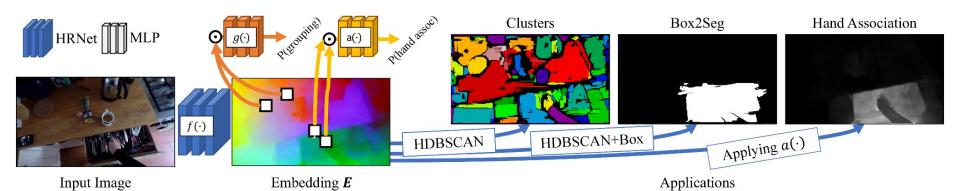
Method – Training

At training time, we assume an image I and pseudolabels for grouping G and association A that identify each pair of pixels *i* and *j* as either positive (e.g., $G_{i,j} = 1$), negative $(G_{i,j} = -1)$, or unknown $(G_{i,j} = 0)$ and similarly for A. Given a set S of pairs of pixels, we directly minimize the binary cross-entropy loss (denoted $CE(y, \hat{y})$) applied to the classification head outputs, or:

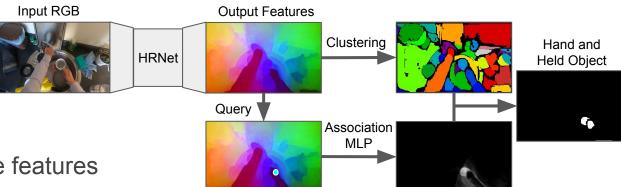
$$\frac{W}{|\mathcal{S}|} \sum_{(i,j)\in\mathcal{S}} \operatorname{CE}(\mathbf{G}_{i,j}, g(\mathbf{e}_{i,j})) + \operatorname{CE}(\mathbf{A}_{i,j}, a(\mathbf{e}_{i,j}))$$
(1)

where $\mathbf{e}_{i,j} \in \mathbb{R}^{2F}$ is defined as the concatenation of the *i*th pixel and *j*th pixel of $\mathbf{E} = f(\mathbf{I})$ (i.e., $\mathbf{e}_{i,j} = [\mathbf{E}[i], \mathbf{E}[j]]$)

- Dense embeddings are learnt only from sampling pairs of pixels to use with the grouping and association MLPs.
- HDBSCAN clustering reveals objects, and we segment held-objects using hand query points and the association MLP.



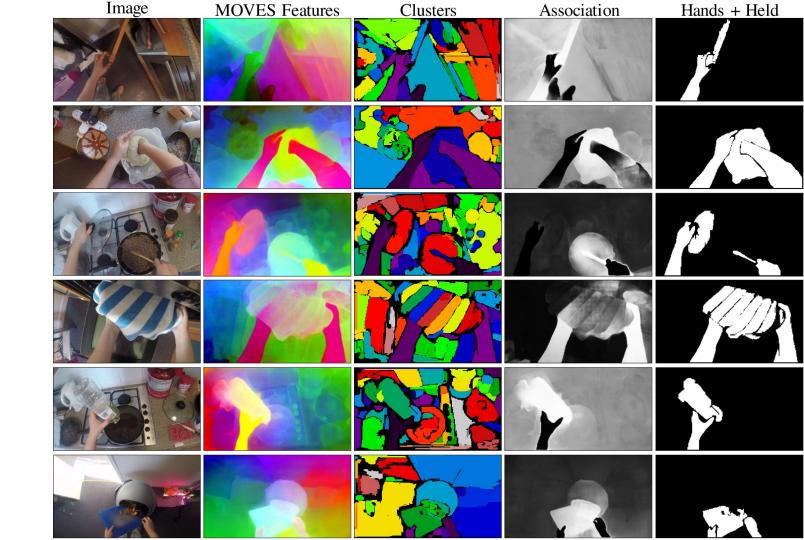
Method – Inference



- 1. HRNet produces dense features
- 2. Features are clustered with HDBSCAN
- 3. A query point on a hand is input
- 4. Association is predicted for this hand
- 5. Association is averaged within clusters
- 6. Association above a threshold becomes a held-object

Results -

Epic Kitchens



Results -

Epic Kitchens

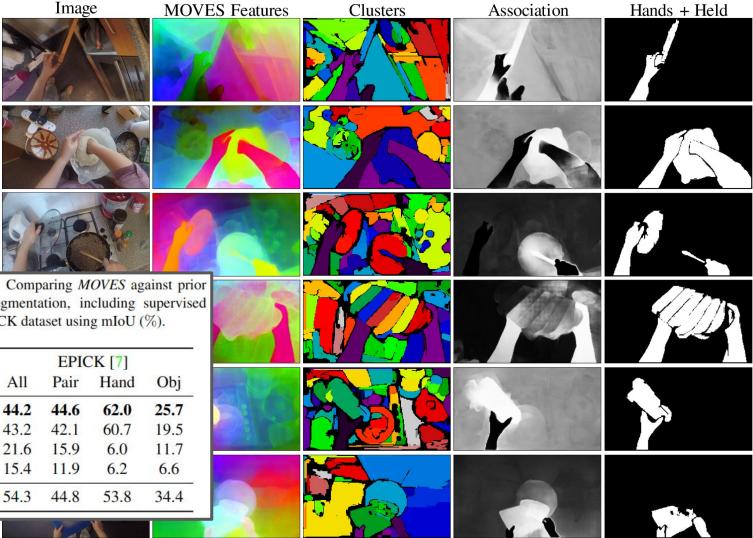
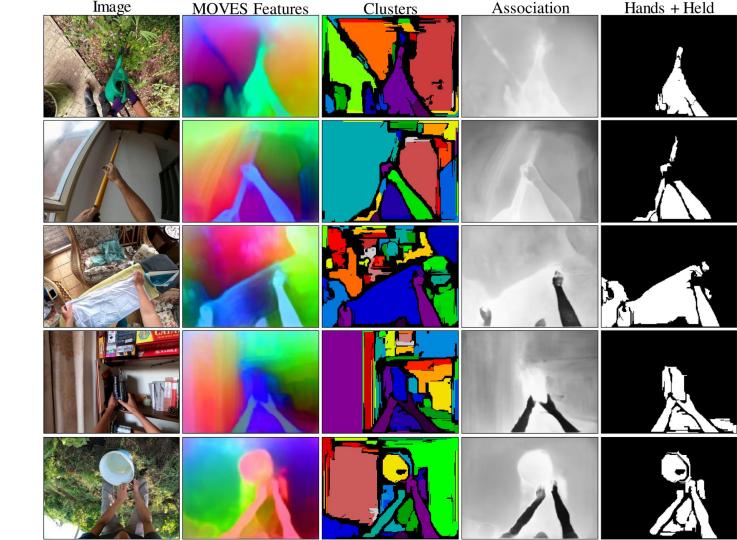


Table 1. HOS Performance. Comparing MOVES against prior methods on Hand+Object Segmentation, including supervised methods, evaluated on the EPICK dataset using mIoU (%).

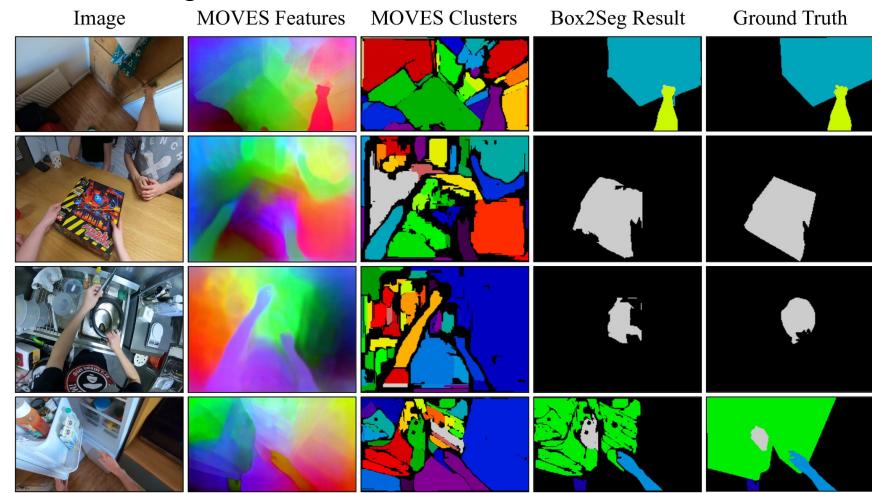
EPICK [7]			
All	Pair	Hand	Obj
44.2	44.6	62.0	25.7
43.2	42.1	60.7	19.5
21.6	15.9	6.0	11.7
15.4	11.9	6.2	6.6
54.3	44.8	53.8	34.4
	44.2 43.2 21.6 15.4	AllPair44.244.643.242.121.615.915.411.9	All Pair Hand 44.2 44.6 62.0 43.2 42.1 60.7 21.6 15.9 6.0 15.4 11.9 6.2

Results -

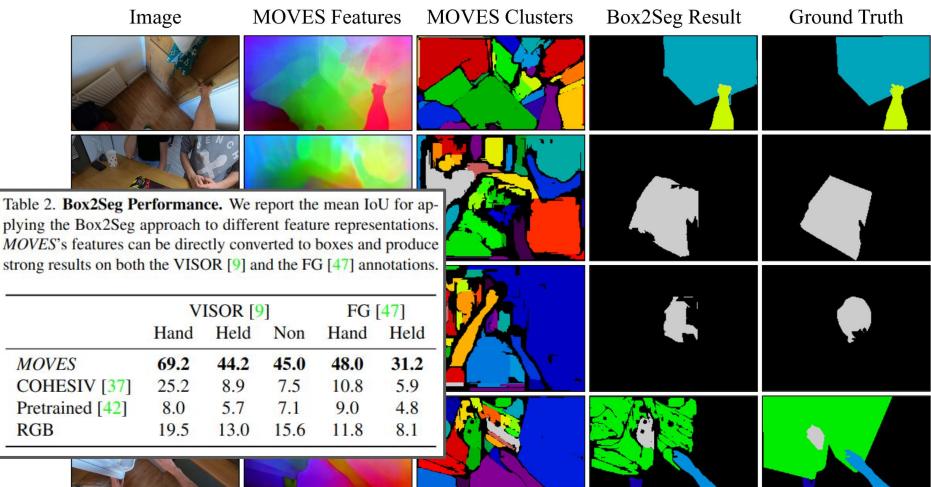
Ego4D



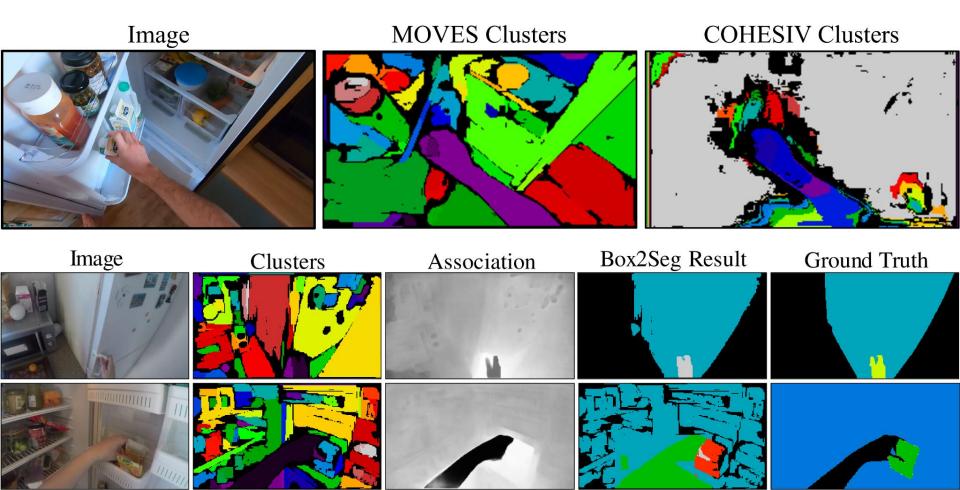
Results - Box2Seg



Results - Box2Seg

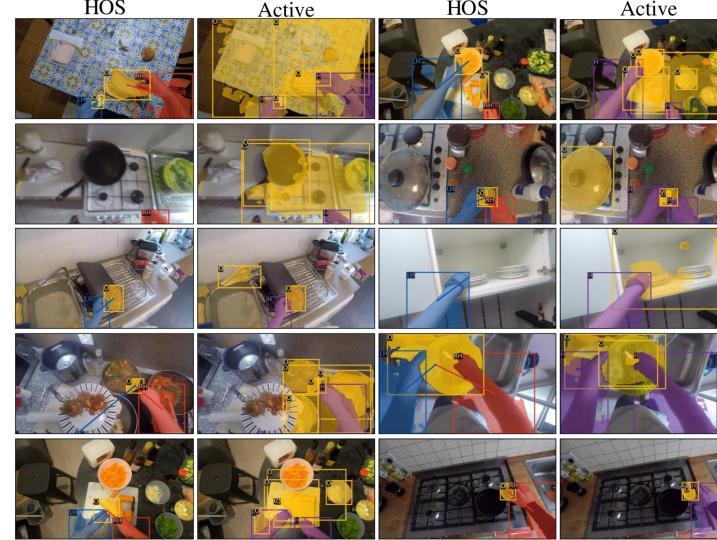


Results - Fridges (and comparison to COHESIV)



- Results -
- Training Label Generation...

Then training PointRend on it!



Comparisons - DINO, Playroom, New Labels, PWC Flow

Table 1. Additional AUROC Evaluations on VISOR.

	Hand	Held	Non
MOVES	99.5	95.2	95.0
MOVES (Alt Pseudolabels)	98.9	94.4	94.5
MOVES (PWC Optical Flow)	98.2	94.6	94.2
DINO	93.1	91.1	89.3

Table 2. Additional Evaluations on Playroom.

	Train Set	val (mIoU)
EISEN	Playroom	73.0
MOVES	Playroom	71.8

- Better grouping than DINO
- Out-of-the-box comparable to EISEN
- Pseudolabels optical flow > X works
- Pseudolabels using PWC flow works

Conclusions

- MOVES shows that <u>simple</u> learning signals and architectural design can lead to effective grouping and association.
- While our auto generated pseudo-labels are grossly inadequate in any one image, using them to train a network on thousands of images at scale leads to effective features.

Future Work

- MOVES shows that a network can <u>implicitly embed association</u>, such that comparing pairs of feature vectors works well. But association could be better modelled explicitly, with querying and attention.
- HDBSCAN and clustering in general can probably factor into both training and inference for more models with dense features.. RAPIDS.ai has clustering faster than neural network inference.