GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency

Lin Tian^{*1} Hastings Greer^{*1} François-Xavier Vialard^{2,3} Roland Kwitt⁴ Raúl San José Estépar⁵ Richard Jarrett Rushmore⁶ Nikolaos Makris⁵ Sylvain Bouix⁷ Marc Niethammer¹ ¹UNC Chapel Hill ²LIGM, Université Gustave Eiffel ³MOKAPLAN, INRIA Paris ⁴University of Salzburg ⁵Harvard Medical School ⁶Boston University ⁷ÉTS Montréal

THU-AM-153

Summary

- Medical Image Registration
 - Finding Physically plausible spatial transformation between two images

Physically Plausible Transformation – One to one mapping without folding.

When using displacement vector field (DVF)

Bending Energy
$$\mathcal{L}_{reg} = \sum_{i} ||\nabla^2 ((\Phi^{AP} - Id)_i)||_F^2$$

Diffusion $\mathcal{L}_{reg} = ||\nabla(\Phi^{AP} - Id)||_F^2$

$$\mathcal{L}_{\mathrm{reg}}^{\mathtt{GradICON}} = \left\| \nabla \left[\Phi_{\theta}^{AB} \circ \Phi_{\theta}^{BA} \right] - \mathbf{I} \right\|_{F}^{2}$$

Gradient Inverse Consistency

Summary

Using Gradient Inverse Consistency as an implicit transformation regularizer results in

- Spatially regular maps
- Better registration accuracy on knee, brain and Lung registration tasks

Background – Medical Image Registration

• Given a paired I^A and I^B , a registration neural network

$$\Phi^{AB} = \Phi[I^A, I^B]$$

aims to predict the transformation between I^A and I^B . We train such a neural network via

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{sim} \left(I_i^A \circ \Phi_{\theta,i}^{AB}, I_i^B \right) + \lambda \mathcal{L}_{reg}(\Phi_{\theta,i}^{AB})$$

Previous Work

Displacement Vector Field (DVF) $\Phi^{AB} = Id + D$

Bending Energy
$$\mathcal{L}_{reg} = \sum_{i} ||\nabla^2 ((\Phi^{AB} - Id)_i)||_F^2$$

Diffusion $\mathcal{L}_{reg} = ||\nabla (\Phi^{AB} - Id)||_F^2$

Limit large and complex deformation when trying to minimize them in the loss function.

 ICON proposed and proved that inverse consistency on the map yields regularized transformation map

$$\mathcal{L}_{inv} = \left\| \Phi_{\theta\varepsilon}^{AB} \circ \Phi_{\theta\varepsilon}^{BA} - \mathrm{Id} \right\|_{2}^{2} + \left\| \Phi_{\theta\varepsilon}^{BA} \circ \Phi_{\theta\varepsilon}^{AB} - \mathrm{Id} \right\|_{2}^{2}$$

But it has difficulty reduce percentage of folding to zero, especially when the resolution gets greater.

Gradient Inverse Consistency

$$\mathcal{L}_{\mathrm{reg}}^{\mathtt{GradICON}} = \left\| \nabla \left[\Phi_{\theta}^{AB} \circ \Phi_{\theta}^{BA} \right] - \mathbf{I} \right\|_{F}^{2}$$

- In theory, it is an implicit *H*¹ type regularization. (see paper)
- Empirically, we observe that it
 - converges faster
 - is less sensitive to varying lambda λ
- Thus, we can learn registration networks with the same architecture, same learning rate and same lambda across registration tasks (inter-patient and intrapatient).

GradICON

A multi-step and multi-resolution network structure

GradICON

A multi-step and multi-resolution network structure

$$\mathcal{L} = \mathcal{L}_{sim}(I^A \circ \Phi[I^A, I^B], I^B) + \\ \mathcal{L}_{sim}(I^B \circ \Phi[I^B, I^A], I^A) + \\ + \lambda \|\nabla(\Phi[I^A, I^B] \circ \Phi[I^B, I^A]) - \mathbf{I}\|_F^2$$

Experiments

- Comparison to other regularizers
- Empirical convergence analysis
- Applications on three datasets
 - A knee MRI dataset of the Osteoarthritis Initiative (OAI)
 - The Human Connectome Project's collection of Young Adult brain MRIs (HCP)
 - A CT inhale/exhale lung dataset from COPDGene.

Better Trading off between Similarity and Regularity

Figure 3. GradICON vs. other regularization techniques.

Better Trading off between Similarity and Regularity

Figure 3. GradICON vs. other regularization techniques.

Converge Faster than ICON

Figure 4. Comparison of the convergence speed (*left*), visualized as 1-LNCC (*i.e.*, dissimilarity), for ICON and GradICON when λ is set to produce a similar level of map regularity (*right*).

Converge Faster than ICON

Figure 4. Comparison of the convergence speed (*left*), visualized as 1-LNCC (*i.e.*, dissimilarity), for ICON and GradICON when λ is set to produce a similar level of map regularity (*right*).

Converge Faster than ICON

Figure 4. Comparison of the convergence speed (*left*), visualized as 1-LNCC (*i.e.*, dissimilarity), for ICON and GradICON when λ is set to produce a similar level of map regularity (*right*).

• GradICON achieves SOTA results on interpatient registration and intra-patient registration tasks.

Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	DICE \uparrow	$ J \downarrow$	Reported by
		OAI		00.0		
Initial				7.0		
Demons [62]	A,DVF	Gaussian	MSE	63.5	0.0006	[52]
SyN [3]	A,VF	Gaussian	LNCC	65.7	0.0000	[52]
NiftyReg [43]	A,B-Spline	BE	NMI	59.7	0.0000	[52]
NiftyReg [43]	A,B-Spline	BE	LNCC	67.9	0.0068	[52]
vSVF-opt [52]	A,vSVF	m-Gauss	LNCC	67.4	0.0000	
VM [4]	SVF	Diff.	MSE	46.1	0.0028	[52]
VM [4]	A,SVF	Diff.	MSE	66.1	0.0013	[52]
AVSM [52]	A,vSVF	m-Gauss	LNCC	68.4	0.0005	
ICON* [23]	DVF	ICON	MSE	65.1	0.0040	
Ours (MSE, $\lambda = 0.2$)	DVF	GradICON	MSE	69.5	0.0000	
Ours (MSE, λ=0.2, Opt.)	DVF	GradICON	MSE	70.5	0.0001	
	DVF	GradICON	LNCC	70.14	0.0261	
Ours (std. protocol)	DVF	GradICON	LNCC	T 4		
	0023050	HCB	AN ALEXT	Inte	er-pa	atient
Terisin I		HCP			1	
Initial				45.2		
FreeSurfer-Affine* [48]	Α		TB	58.5	0.0000	
SyN* [3]	A,VF	Gaussian	MI	68.9	0.0000	
sm-shapes" [31]	A.SVF	Diff.	DICE	72.5	0.2886	2
sm-brains* [31]	A,SVF	Diff.	DICE	72.4	0.0318	
Owner first second to	DVF	GradICON	LNCC	71.11	0.0009	
Ours (sia. protocot)	DVF	GradICON	LNCC	72.5‡	0.0003	
		DirLab				20
Method	Trans.	Luce	Laim	mTRE 1	%[J] 1	
			2 ((())))	[mm]	0.000	
Initial				23.36		
SyN [3]	A.VF	Gaussian	LNCC	1.79		[26]
Elastix [38]	A.B-Spline	BE	MSE	1.32		[26]
NiftyReg [43]	A.B-Spline	BE	MI	2.19		[26]
PTVReg [65]	DVF	TV	LNCC	0.96	_	
RRN [28]	DVF	TV	LNCC	0.83	-	
VM* [4]	A,SVF	Diff.	NCC	9.88	0	2
LapIRN* [45]	SVF	Diff.	NCC	2.92	0	
LapIRN* [45]	DVF	Diff.	NCC	4.24	0.0105	
Hering et al. [30]	DVF	Curv+VCC	DICE+KP+NGF	2.00	0.0600	
GraphRegNet [26]	DV	Sector Sector	MSE	1.34		
PLOSL [66]	DVF	Diff.	TVD+VMD	2.22	1022	
PLOSL ₅₀ [66]	DVF	Diff.	TVD+VMD	T 4		4 4
ICON* 1231	DVF	ICON	LNCC	inte	r-pa	tient
	DVF	GradICON	LNCC	1.601	MARALZ	
Ours (std. protocol)	DVF	GradICON	LNCC	0.96t	0.0002	
	10.11		10111.10	200 C C C	Souther .	

Table 3. Full comparison on OAI, HCP and DirLah. \dagger and \ddagger indicate results from our standard training protocol, with (\dagger) and without (\ddagger) instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set $\lambda = 0.2$. Top and bottom table parts denote non-learning and learning-based methods, resp. For DirLab, results are shown in the common *inspiration*—*sexpiration* direction. Results marked with "are obtained using code from the official repository; no * indicates values from literature. \underline{A} : affine pre-registration, <u>BE</u>: bending energy, <u>MI</u>: mutual information, <u>DY</u>: displacement vector of sparse key points, <u>TV</u>: total variation, <u>Cury</u>: curvature regularizer, <u>VCC</u>: volume change control, <u>NGF</u>: normalized gradient flow, <u>TVD</u>: sum of squared tissue volume difference, <u>VMD</u>: sum of squared vesselness measure difference, <u>Diff</u>: diffusion, <u>VF</u>: velocity field, <u>SVF</u>: stationary VF, <u>DVF</u>: displacement vector field. <u>PLOSLab</u>: 50 iterations of instance optimization with PLOSL.

- GradICON achieves SOTA results on interpatient registration and intra-patient registration tasks.
- GradICON achieves best performance on knee and lung registration and on par with the SOTA method(need Affine pre-registration) on brain registration.

Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	DICE ↑	$ \mathcal{S} J \downarrow$	Reported by
		OAI				
Initial				7.6		
Demons [62]	A,DVF	Gaussian	MSE	63.5	0.0006	[52]
SyN [3]	A,VF	Gaussian	LNCC	65.7	0.0000	1521
NiftyReg [43]	A.B-Spline	BE	NMI	59.7	0.0000	[52]
NiftyReg [43]	A,B-Spline	BE	LNCC	67.9	0.0068	1521
vSVF-opt [52]	A,vSVF	m-Gauss	LNCC	67.4	0.0000	
VM [4]	SVF	Diff.	MSE	46.1	0.0028	[52]
VM [4]	A,SVF	Diff.	MSE	66.1	0.0013	[52]
AVSM [52]	A,vSVF	m-Gauss	LNCC	68.4	0.0005	STATISTICS.
ICON* [23]	DVF	ICON	MSE	65.1	0.0040	
Ours (MSE, $\lambda = 0.2$)	DVF	GradICON	MSE	69.5	0.0000	
Ours (MSE, λ=0.2, Opt.)	DVF	GradICON	MSE	70.5	0.0001	
0	DVF	GradICON	LNCC	70.1±	0.0261	
Ours (std. protocol)	DVF	GradICON	LNCC	71.21	0.0042	
		нср		_		
Initial				45.2		
FreeSurfer-Affine* [48]	Α		TB	58.5	0.0000	
SyN* [3]	A.VF	Gaussian	MI	68.9	0.0000	
sm-shapes" [31]	A.SVF	Diff.	DICE	72.5	0.2886	
sm-brains* [31]	A.SVF	Diff.	DICE	72.4	0.0318	
	DVF	GradICON	LNCC	71.11	0.0009	
Ours (xtd. protocol)	DVF	GradICON	LNCC	72.51	0.0003	
		DirLab				
Method	Trans.	Luce	\mathcal{L}_{nim}	mTRE 1	$%[J] \downarrow$	
	20100046			(mm)		
Initial				23.36		
SyN [3]	A,VF	Gaussian	LNCC	1.79	100	[26]
Elastix [38]	A,B-Spline	BE	MSE	1.32		[26]
NiftyReg [43]	A,B-Spline	BE	MI	2.19		[26]
PTVReg [65]	DVF	TV	LNCC	0.96	-	
RRN [28]	DVF	TV	LNCC	0.83		
VM* [4]	A,SVF	Diff.	NCC	9.88	0	
LapIRN* [45]	SVF	Diff.	NCC	2.92	0	
LapIRN* [45]	DVF	Diff.	NCC	4.24	0.0105	
Hering et al. [30]	DVF	Curv+VCC	DICE+KP+NGF	2.00	0.0600	
GraphRegNet [26]	DV		MSE	1.34		
PLOSL [66]	DVF	Diff.	TVD+VMD	3.84	0	
PLOSL ₅₀ [66]	DVF	Diff.	TVD+VMD	1.53	0	
			1 - 2 - C - C - C - C - C - C - C - C - C	0.500.05	and the second second	
ICON" [23]	DVF	ICON	LNCC	7.04	0.3792	
ICON* [23]	DVF	ICON GradICON	LNCC	7.04 1.26†	0.3792	

Table 3. Full comparison on OAI, HCP and DirLab. \dagger and \ddagger indicate results from our standard training protocol, with (\dagger) and without (\ddagger) instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set $\lambda = 0.2$. Top and bottom table parts denote non-learning and learning-based methods, resp. For DirLab, results are shown in the common *intpiration*—*expiration* direction. Results marked with "are obtained using code from the official repository; no * indicates values from literature. <u>A</u>: affine pre-registration, <u>BE</u>: bending energy, <u>MI</u>: mutual information, <u>DV</u>: displacement vector of sparse key points, <u>TV</u>: total variation, <u>Curv</u>: curvature regularizer, <u>VCC</u>: volume change control, <u>NGF</u>: normalized gradient flow, <u>TVD</u>: sum of squared tissue volume difference, <u>VMD</u>: sum of squared vesselness measure difference, <u>Diff</u>: diffusion, <u>VF</u>: velocity field, <u>SVF</u>: stationary VF, <u>DVF</u>: displacement vector field. <u>PLOSL_106</u>: 50 iterations of instance optimization with PLOSL.

- GradICON achieves SOTA results on interpatient registration and intra-patient registration tasks.
- GradICON achieves best performance on knee and lung registration and on par with the SOTA method(need Affine preregistration) on brain registration.
- GradICON does not need affine prealignment even for large deformation.

Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	DICE ↑	$ \mathcal{S} J \downarrow$	Reported by
		OAI				
Initial				7.6		
Demons [62]	A,DVF	Gaussian	MSE	63.5	0.0006	1521
SyN [3]	A,VF	Gaussian	LNCC	65.7	0.0000	1521
NiftyReg [43]	A.B-Spline	BE	NMI	59.7	0.0000	[52]
NiftyReg [43]	A,B-Spline	BE	LNCC	67.9	0.0068	1521
vSVF-opt [52]	A,vSVF	m-Gauss	LNCC	67.4	0.0000	
VM [4]	SVF	Diff.	MSE	46.1	0.0028	[52]
VM [4]	A,SVF	Diff.	MSE	66.1	0.0013	[52]
AVSM [52]	A,vSVF	m-Gauss	LNCC	68.4	0.0005	
ICON* [23]	DVF	ICON	MSE	65.1	0.0040	
Ours (MSE, $\lambda = 0.2$)	DVF	GradICON	MSE	69.5	0.0000	
Ours (MSE, λ =0.2, Opt.)	DVF	GradICON	MSE	70.5	0.0001	
Ower laid anniocali	DVF	GradICON	LNCC	70.1†	0.0261	
Ours (sia. protocot)	DVF	GradICON	LNCC	71.21	0.0042	
		HCP				
Initial		1002000		45.2		
FreeSurfer-Affine* [48]	A		TB	58.5	0.0000	
SyN* [3]	AVE	Gaussian	MI	68.9	0.0000	
sm-shapes" [31]	A.SVF	Diff.	DICE	72.5	0.2886	
sm-brains* [31]	A,SVF	Diff.	DICE	72.4	0.0318	
	DVP	GradICON	LNCC	71.11	0.0009	
Ours (std. protocol)	DVF	GradICON	LNCC	72.51	0.0003	
		DirLab				
Method	Trans.	C	Caim	mTRE 1	%5./11	
	50.0000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ 1111	[mm]	sele 1 +	
Initial				23.36		
SyN [3]	A.VF	Gaussian	LNCC	1.79		[26]
Elastix [38]	A,B-Spline	BE	MSE	1.32	_	[26]
NiftyReg [43]	A,B-Spline	BE	MI	2.19		[26]
PTVReg [65]	DVF	TV	LNCC	0.96	-	
RRN [28]	DVF	TV	LNCC	0.83		
VM* [4]	A,SVF	Diff.	NCC	9.88	0	
LapIRN* [45]	SVP	Diff.	NCC	2.92	0	
LapIRN* [45]	DVF	Diff.	NCC	4.24	0.0105	
Hering et al. [30]	DVF	Curv+VCC	DICE+KP+NGF	2.00	0.0600	
GraphRegNet [26]	DV	a civity capital as	MSE	1.34		
PLOSL [66]	DVF	Diff.	TVD+VMD	3.84	0	
PLOSL50 [66]	DVF	Diff.	TVD+VMD	1.53	0	
ICON" [23]	DVF	ICON	LNCC	7.04	0.3792	
Own feld and coll	DVF	GradICON	LNCC	1.26†	0.0003	
Ours (std. protocol)	DVF	GradICON	LNCC	0.96t	0.0002	

Table 3. Full comparison on OAI, HCP and DirLab. \dagger and \ddagger indicate results from our standard training protocol, with (\dagger) and without (\ddagger) instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set $\lambda = 0.2$. Top and bottom table parts denote non-learning and learning-based methods, resp. For DirLab, results are shown in the common *inspiration*—*sexpiration* direction. Results marked with "a are obtained using code from the official repository, no " indicates values from literature. \underline{A} : affine pre-registration, <u>BE</u>: bending energy, <u>MI</u>: mutual information, <u>DY</u>: displacement vector of sparse key points, <u>TV</u>: total variation, <u>Curv</u>: curvature regularized measure change control, <u>NGF</u>: normalized gradient flow, <u>TVD</u>: sum of squared tissue volume difference, <u>VMD</u>: sum of squared vesselness measure difference, <u>Diff</u>: diffusion, <u>VF</u>: velocity field, <u>SVF</u>: stationary VF, <u>DVF</u>: displacement vector field. <u>PLOSL_106</u>: 50 iterations of instance optimization with PLOSL.

- GradICON achieves SOTA results on interpatient registration and intra-patient registration tasks.
- GradICON achieves best performance on knee and lung registration and on par with the SOTA method(need Affine pre-registration) on brain registration.
- GradICON does not need affine prealignment even for large deformation.
- GradICON creates very small portion of foldings.

Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	DICE †	$ \mathcal{S} J \downarrow$	Reported by
		OAI				
Initial				7.6		
Demons [62]	A,DVF	Gaussian	MSE	63.5	0.0006	1521
SyN [3]	A,VF	Gaussian	LNCC	65.7	0.0000	1521
NiftyReg [43]	A.B-Spline	BE	NMI	59.7	0.0000	[52]
NiftyReg [43]	A.B-Spline	BE	LNCC	67.9	0.0068	1521
vSVF-opt [52]	A,vSVF	m-Gauss	LNCC	67.4	0.0000	
VM [4]	SVF	Diff.	MSE	46.1	0.0028	[52]
VM [4]	A.SVF	Diff.	MSE	66.1	0.0013	[52]
AVSM [52]	A.vSVF	m-Gauss	LNCC	68.4	0.0005	STATION C
ICON* [23]	DVF	ICON	MSE	65.1	0.0040	
Ours (MSE, $\lambda = 0.2$)	DVF	GradICON	MSE	69.5	0.0000	
Ours (MSE, λ=0.2, Opt.)	DVF	GradICON	MSE	70.5	0.0001	
	DVF	GradICON	LNCC	70.11	0.0261	
Ours (std. protocol)	DVF	GradICON	LNCC	71.21	0.0042	
	104050-1	HCP	1110303/00/11	1256625		
Initial		ner		45.2		
FreeSurfer-Affine* [48]	Α		TB	58.5	0.0000	
SvN* [3]	A.VF	Gaussian	MI	68.9	0.0000	
sm-shapes" [31]	A.SVF	Diff.	DICE	72.5	0.2886	
sm-brains* [31]	A,SVF	Diff.	DICE	72.4	0.0318	
	DVF	GradICON	LNCC	71.11	0.0009	
Ours (xtd. protocol)	DVF	GradICON	LNCC	72.51	0.0003	
		DirLab				
Method	Trans.	Luce	\mathcal{L}_{nim}	mTRE	$%[J] \downarrow$	
			2 (1.0) .	[mm]	0.00	
Initial				23.36		
SyN [3]	A,VF	Gaussian	LNCC	1.79	-	[26]
Elastix [38]	A,B-Spline	BE	MSE	1.32	_	[26]
NiftyReg [43]	A,B-Spline	BE	MI	2.19		[26]
PTVReg [65]	DVF	TV	LNCC	0.96	-	
RRN [28]	DVF	TV	LNCC	0.83		
VM* [4]	A,SVF	Diff.	NCC	9.88	0	
LapIRN [*] [45]	SVF	Diff.	NCC	2.92	0	
LapIRN* [45]	DVF	Diff.	NCC	4.24	0.0105	
Hering et al. [30]	DVF	Curv+VCC	DICE+KP+NGF	2.00	0.0600	
GraphRegNet [26]	DV		MSE	1.34	-	
PLOSL [66]	DVF	Diff.	TVD+VMD	3.84	0	
PLOSL50 [66]	DVF	Diff.	TVD+VMD	1.53	0	
ICON" [23]	DVF	ICON	LNCC	7.04	0.3792	
0	DVF	GradICON	LNCC	1.26†	0.0003	
Ours (std. protocol)	DVE	Graditcon	INCC	0.961	0.0002	

Table 3. Full comparison on OAI, HCP and DirLab. \dagger and \ddagger indicate results from our standard training protocol, with (\dagger) and without (\ddagger) instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set $\lambda = 0.2$. Top and bottom table parts denote non-learning and learning-based methods, resp. For DirLab, results are shown in the common *intpiration*—*expiration* direction. Results marked with "are obtained using code from the official repository; no * indicates values from literature. A: affine pre-registration, <u>BE</u>: bending energy, <u>MI</u>: mutual information, <u>DV</u>: displacement vector of sparse key points, <u>TV</u>: total variation, <u>Cury</u>: curvature regularizer, <u>VCC</u>: volume change control, <u>NGF</u>: normalized gradient flow, <u>TVD</u>: sum of squared tissue volume difference, <u>VMD</u>: sum of squared vesselness measure difference, <u>Diff</u>: diffusion, <u>VF</u>: velocity field, <u>SVF</u>: stationary VF, <u>DVF</u>: displacement vector field. <u>PLOSL_106</u>: 50 iterations of instance optimization with PLOSL.

- GradICON achieves SOTA results on interpatient registration and intra-patient registration tasks.
- GradICON achieves best performance on knee and lung registration and on par with the SOTA method(need Affine pre-registration) on brain registration.
- GradICON does not need affine prealignment even for large deformation.
- GradICON creates very small portion of foldings.
- In the table, GradICON is trained with the same network structure, same lambda and same learning rate for all three tasks.

-	-			
ĩ	Ĩ	Ĩ	1	
L	13			
Ś	-		-	>

Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	DICE ↑	$ \mathcal{S} J \downarrow$	Reported by
		OAL				
Initial				7.6		
Demons [62]	A,DVF	Gaussian	MSE	63.5	0.0006	[52]
SyN [3]	A,VF	Gaussian	LNCC	65.7	0.0000	1521
NiftyReg [43]	A.B-Spline	BE	NMI	59.7	0.0000	[52]
NiftyReg [43]	A.B-Spline	BE	LNCC	67.9	0.0068	1521
vSVF-opt [52]	A.vSVF	m-Gauss	LNCC	67.4	0.0000	
VM [4]	SVF	Diff.	MSE	46.1	0.0028	[52]
VM [4]	A.SVF	Diff.	MSE	66.1	0.0013	1521
AVSM [52]	A.vSVF	m-Gauss	LNCC	68.4	0.0005	5.00 A
ICON* [23]	DVF	ICON	MSE	65.1	0.0040	
Ours (MSE, $\lambda = 0.2$)	DVF	GradICON	MSE	69.5	0.0000	
Ours (MSE A=0.2 Opt)	DVF	Gradition	MSE	70.5	0.0001	
	DVF	GradICON	LNCC	70.11	0.0261	
Ours (std. protocol)	DVF	GradICON	LNCC	71.21	0.0042	
		нср		1.1.197.51		
Initial		inci		45.2		
FreeSurfer-Affine* [48]	Α		TB	58.5	0.0000	
SyN* [3]	A,VF	Gaussian	MI	68.9	0.0000	
sm-shapes" [31]	A.SVF	Diff.	DICE	72.5	0.2886	
sm-brains* [31]	A,SVF	Diff.	DICE	72.4	0.0318	
	DVF	GradICON	LNCC	71.11	0.0009	
Ours (xid. protocol)	DVF	GradICON	LNCC	72.51	0.0003	
		DirLab				
Method	Trans.	\mathcal{L}_{reg}	\mathcal{L}_{sim}	mTRE ↓	$%[J]\downarrow$	
Initial		12846		[mm] 23.36		
SyN [3]	A,VF	Gaussian	LNCC	1.79		[26]
Elastix [38]	A.B-Spline	BE	MSE	1.32		[26]
NiftyReg [43]	A.B-Spline	BE	MI	2.19		[26]
PTVReg [65]	DVF	TV	LNCC	0.96	_	
RRN [28]	DVF	TV	LNCC	0.83		
VM* [4]	A,SVF	Diff.	NCC	9.88	0	
LapIRN* [45]	SVF	Diff.	NCC	2.92	0	
LapIRN* [45]	DVF	Diff.	NCC	4.24	0.0105	
Hering et al. [30]	DVF	Curv+VCC	DICE+KP+NGF	2.00	0.0600	
GraphRegNet [26]	DV	a civita cargana a	MSE	1.34		
PLOSL [66]	DVF	Diff.	TVD+VMD	3.84	0	
PLOSL50 [66]	DVF	Diff.	TVD+VMD	1.53	0	
ICON" [23]	DVF	ICON	LNCC	7.04	0.3792	
Owner and a second	DVF	GradICON	LNCC	1.26†	0.0003	
Ours (std. protocol)	DVF	GradICON	LNCC	0.961	0.0002	

Table 3. Full comparison on OAI, HCP and DirLab. \dagger and \ddagger indicate results from our standard training protocol, with (\dagger) and without (\ddagger) instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set $\lambda = 0.2$. Top and bottom table parts denote non-learning and learning-based methods, resp. For DirLab, results are shown in the common *interiation*—*expiration* direction. Results marked with "are obtained using code from the official repository; no "indicates values from literature. \underline{A} : affine pre-registration, \underline{BE} : bending energy, \underline{ME} : mutual information, \underline{DV} : displacement vector of sparse key points, \underline{TV} : total variation, \underline{Cuv} : curvature regularizer, \underline{VCC} : volume change control, \underline{NGF} : normalized gradient flow, \underline{TVD} : sum of squared tissue volume difference, \underline{VMD} : sum of squared vesselness measure difference, \underline{Diff} : diffusion, \underline{VE} : velocity field, \underline{SVF} : stationary VF, \underline{DVF} : displacement vector field. <u>PLOSLate</u>: 50 iterations of instance optimization with PLOSL.

- We develop Gradient Inverse Consistency, a versatile regularizer for learningbased image registration that relies on penalizing the Jacobian of the inverse consistency constraint and results, empirically and theoretically, in spatially well-regularized transformation maps.
- We demonstrate SOTA performance of models trained with GradICON on three large medical datasets with a unified training protocal.

Github https://github.com/uncbiag/ICON

THU-AM-153

