

Shape, Pose, and Appearance from a Single Image via Bootstrapped **Radiance Field Inversion**

Dario Pavllo David Joseph Tan Marie-Julie Rakotosaona Federico Tombari

CVPR 2023

TUE-PM-025

Google ETHzürich

NeRF from a single image

- Goal: learn a model to reconstruct 3D shape, pose, and appearance from a single view of an object
 - NeRF with SDF shape parameterization
- Training **without** multiple views
- Focus on real datasets as opposed to synthetic datasets
 - O Poses may be inaccurate

Reconstruction demo

Reconstruction demo

Reconstruction demo

Reconstruction frameworks & motivation

Encoder-based

- E.g. CMR, PixelNeRF, Pix2NeRF
- Autoencoder setup: a ConvNet encoder predicts a latent code w which is decoded into a 3D scene
- Fast but relies on accurate poses, which are typically available only on synthetic datasets

GAN Inversion via Optimization

- Leverages a pretrained unconditional GAN (e.g. pi-GAN, EG3D)
- Gradient-based optimization w.r.t. pose and latent code **w**
- Better results, robust to inaccurate poses, but very slow

Bootstrapped Inversion (Ours)

- Not explored for NeRFs
- A ConvNet encoder produces a first guess of the pose and latent code
- These are then refined via optimization for a small number of steps

Method (1/3): unconditional GAN training

• We train an unconditional 3D GAN on the collection of images (foundation model)

- Backbone inspired by EG3D (triplanar NeRF representation), with some improvements
 - \bigcirc SDF representation (VolSDF) \rightarrow better surface reconstruction
 - **Color mapping:** disentanglement between color and semantics → facilitates inversion & manipulation
 - \bigcirc Path length regularization \rightarrow facilitates inversion

Method (2/3): bootstrapping & pose estimation

- Using generated data, we learn a model that jointly predicts the pose and the latent code w
- NOCS approach: predict a canonical map, convert to point cloud, and recover the pose using a PnP solver
 - O More robust than directly regressing the pose parameters
 - O Pseudo-ground-truth canonical maps generated using the GAN itself (rasterize xyz instead of rgb)

Method (3/3): hybrid inversion

- At inference, we initially estimate the latent code **w** and pose using the previous model
- These are then refined via optimization using a VGG loss
 - O In practice, we use multiple crops to reduce the variance of the gradient
- We further investigated strategies to achieve maximum speed
 - O We can invert an image in as few as **10 steps** (vs 100s of related work)

Datasets & Evaluation

- Approach evaluated on a mix of synthetic and real datasets
- For real datasets, we compare to CMR (Kanazawa et al. 2018) & follow-up papers (U-CMR, UMR, ...)
 - \bigcirc Reconstruction evaluated using IoU against input view \rightarrow easy to overfit
 - \bigcirc No ground-truth novel views \rightarrow quality evaluated using FID on renderings from random views
- For ShapeNet, in addition to the FID, we evaluate the PSNR on novel views from the test set
 - O Comparison against Pix2NeRF (Cai et al. 2022)

Side-by-side comparison

Qualitative results

End-to-end reconstruction pipeline on real images in the wild (ImageNet)

End-to-end reconstruction: quantitative results

Even without inversion (N = 0 steps), we show an improvement over existing work

- O 36% decrease in FID on CUB over SOTA; 9% increase in IoU on P3D Cars
- O 68% decrease in FID on ShapeNet Chairs; 83% decrease in FID on CARLA
- Applying our hybrid inversion approach further widens the gap

	Pase	cal3D+ Cars	CUB	Birds
Method	IoU↑	$FID\downarrow$	IoU ↑	$FID\downarrow$
CMR [27]	0.64	273.28	0.706	105.04
U-CMR [17]	0.646	223.12	0.644	69.42
UMR [33]	-	-	<u>0.734</u>	<u>43.83</u>
SDF-SRN [34]	<u>0.81</u>	254.90	-	-
ViewGeneralization [2]	0.78	-	0.629	-
StyleGANRender [71]	0.80	-	-	-
Ours Init. (<i>N</i> =0)	0.883	75.90 (15.08)	0.739	28.15
MeshInv. (N=200) (*) (†) [69]	-	-	0.752	31.60
Ours Hybrid Slow $(N=30)$ (†)	0.920	<u>73.53</u> (14.36)	0.844	24.70
Ours Hybrid Fast $(N=10)$ (†)	<u>0.917</u>	73.12 (14.36)	<u>0.835</u>	25.65

	SRN Cars			SRN Chairs			CARLA
Method	PSNR ↑	$\mathbf{SSIM} \uparrow$	$FID\downarrow$	PSNR ↑	$\text{SSIM} \uparrow$	$FID\downarrow$	$\mathrm{FID}\downarrow$
Pix2NeRF [4]	-	-	-	18.14	0.84	26.81	38.51
Ours Init. (N=0)	18.54	0.848	12.39	18.26	0.857	8.64	6.49
Ours Hybrid Slow $(N=30)$	19.55	0.864	11.37	19.36	0.875	7.44	5.97
Ours Hybrid Fast (N=10)	<u>19.24</u>	<u>0.861</u>	<u>12.26</u>	<u>19.02</u>	<u>0.871</u>	<u>7.62</u>	<u>6.18</u>

Evaluation on real datasets

(Novel views **not** available)

Evaluation on synthetic datasets

(Novel views available on ShapeNet)

Bonus: extraction of a triangle mesh from the SDF

- The adoption of an SDF representation allows us extract its 0-level set and obtain a colored triangle mesh
- Results at different step sizes for the marching cubes algorithm

Thank you for your attention!

Feel free to visit our poster: **TUE-PM-025**

(Tuesday afternoon session, stand 25)