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NeRF from a single image

● Goal: learn a model to reconstruct 3D shape, pose, and appearance from a single view of an object
● NeRF with SDF shape parameterization

● Training without multiple views

● Focus on real datasets as opposed to synthetic datasets
○ Poses may be inaccurate
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Reconstruction demo
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Reconstruction demo

4



Reconstruction demo
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Encoder-based

● E.g. CMR, PixelNeRF, Pix2NeRF
● Autoencoder setup: a ConvNet 

encoder predicts a latent code w
which is decoded into a 3D scene

● Fast but relies on accurate poses, 
which are typically available only on 
synthetic datasets

GAN Inversion via Optimization

● Leverages a pretrained unconditional 
GAN (e.g. pi-GAN, EG3D)

● Gradient-based optimization w.r.t. 
pose and latent code w

● Better results, robust to inaccurate 
poses, but very slow

Bootstrapped Inversion (Ours)

● Not explored for NeRFs
● A ConvNet encoder produces a first 

guess of the pose and latent code
● These are then refined via 

optimization for a small number of 
steps
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Reconstruction frameworks & motivation
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Method (1/3): unconditional GAN training
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● We train an unconditional 3D GAN on the collection of images (foundation model)

● Backbone inspired by EG3D (triplanar NeRF representation), with some improvements
○ SDF representation (VolSDF) → better surface reconstruction
○ Color mapping: disentanglement between color and semantics → facilitates inversion & manipulation
○ Path length regularization → facilitates inversion
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Method (2/3): bootstrapping & pose estimation
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● Using generated data, we learn a model that jointly predicts the pose and the latent code w

● NOCS approach: predict a canonical map, convert to point cloud, and recover the pose using a PnP solver
○ More robust than directly regressing the pose parameters
○ Pseudo-ground-truth canonical maps generated using the GAN itself (rasterize xyz instead of rgb)
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Method (3/3): hybrid inversion
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● At inference, we initially estimate the latent code w and pose using the previous model

● These are then refined via optimization using a VGG loss
○ In practice, we use multiple crops to reduce the variance of the gradient

● We further investigated strategies to achieve maximum speed
○ We can invert an image in as few as 10 steps (vs 100s of related work)
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Datasets & Evaluation
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● Approach evaluated on a mix of synthetic and real datasets

● For real datasets, we compare to CMR (Kanazawa et al. 2018) & follow-up papers (U-CMR, UMR, …)
○ Reconstruction evaluated using IoU against input view → easy to overfit
○ No ground-truth novel views → quality evaluated using FID on renderings from random views

● For ShapeNet, in addition to the FID, we evaluate the PSNR on novel views from the test set
○ Comparison against Pix2NeRF (Cai et al. 2022)

Pascal3D+ Cars CUB Birds ImageNet (misc) CARLA ShapeNet Cars ShapeNet Chairs

Real datasets Synthetic datasets



Qualitative results
Real images
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Left:
Pascal3D+ Cars
(test set)

Right:
CUB Birds
(test set)



Qualitative results
Synthetic images
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Input Pose +
Initial latent Refined 360° Input Pose +

Initial latent Refined 360°

Left:
ShapeNet Chairs
(test set)

Right:
ShapeNet Cars
(test set)



Side-by-side comparison
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Qualitative results
End-to-end reconstruction pipeline on real images in the wild (ImageNet)
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End-to-end reconstruction: quantitative results

● Even without inversion (N = 0 steps), we show an improvement over existing work
○ 36% decrease in FID on CUB over SOTA; 9% increase in IoU on P3D Cars
○ 68% decrease in FID on ShapeNet Chairs; 83% decrease in FID on CARLA

● Applying our hybrid inversion approach further widens the gap
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Evaluation on real datasets
(Novel views not available)

Evaluation on synthetic datasets
(Novel views available on ShapeNet)



Bonus: extraction of a triangle mesh from the SDF

● The adoption of an SDF representation allows us extract its 0-level set and obtain a colored triangle mesh

● Results at different step sizes for the marching cubes algorithm
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Thank you for your attention!

Feel free to visit our poster:

(Tuesday afternoon session, stand 25)
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