

Point Cloud Forecasting as a proxy for 4D Occupancy Forecasting

Tarasha Khurana*

Peiyun Hu*

David Held

Deva Ramanan

Carnegie Mellon University

Past LiDAR data

Future LiDAR prediction

 $t = \{-T \dots 0\}$

• Point cloud forecasting

Future LiDAR groundtruth

 $t = \{1 ... T\}$

Past LiDAR data

Future LiDAR prediction

$$z = \{-T \dots 0\}$$

• Point cloud forecasting = sensor extrinsics and intrinsics

Future LiDAR groundtruth

 $t = \{1 ... T\}$

Past LiDAR data

Future Occupancy prediction

 $t = \{-T \dots 0\}$

 $t = \{1 ... T\}$

using known extrinsics and intrinsics

Point cloud forecasting = sensor extrinsics and intrinsics + 4D occupancy forecasting \bullet

Future LiDAR prediction

Future LiDAR groundtruth

$$t = \{1 ... T\}$$

Past LiDAR data

Future Occupancy prediction

$$t = \{-T \dots 0\}$$

 $t = \{1 ... T\}$

using known extrinsics and intrinsics

 \bullet

Future LiDAR prediction

Future LiDAR groundtruth

$$t = \{1 ... T\}$$

 $t = \{1 ... T\}$

Point cloud forecasting = sensor extrinsics and intrinsics + 4D occupancy forecasting

- \bullet

Point cloud forecasting = sensor extrinsics and intrinsics + 4D occupancy forecasting Dramatically improved performance on point cloud forecasting as compared to SOTA

Learnt Future Occupancy

nuScenes LiDAR

Novel intrinsic-view synthesis

- Point cloud forecasting = sensor extrinsics and intrinsics + 4D occupancy forecasting
- Dramatically improved performance on point cloud forecasting as compared to SOTA
- Disentaglement allows for cross-sensor training and generalization

KITTI LiDAR

ArgoVerse2.0 LiDAR

nuScenes LiDAR Learnt Future Occupancy

Novel intrinsic-view synthesis

- \bullet
- Disentaglement allows for cross-sensor training and generalization \bullet

KITTI LIDAR

ArgoVerse2.0 LiDAR

Reference RGB frame, t = 0s

Novel-view depth synthesis

Point cloud forecasting = sensor extrinsics and intrinsics + 4D occupancy forecasting

Dramatically improved performance on point cloud forecasting as compared to SOTA

Point Cloud Forecasting as a proxy for 4D Occupancy Forecasting

Future Occupancy prediction

 $t = \{1 ... T\}$

using known extrinsics and intrinsics

Future LiDAR prediction

Standard perception and prediction requires costly labels

Point Cloud Forecasting

Historical LiDAR Sweeps

4D Forecasting: Sequential Forecasting of 100,000 Points Weng et al., CVPR'21 Self-supervised Point Cloud Prediction using 3D Spatial-temporal Convolutional Networks Mersch et al., CORL'22

Future Point Clouds

The difficulty of predicting points

Points lie at the intersection of sensor rays and environment

The difficulty of predicting points

Rays change with change in sensor extrinsics and intrinsics

The difficulty of predicting points

We should make predictions about our environment, not our sensor!

4D Occupancy Forecasting w/ differentiable volumetric rendering

 $t = \{-T \dots 0\}$

 $t = \{1 ... T\}$

4D Occupancy Forecasting w/ differentiable volumetric rendering

Past LiDAR data

Future Occupancy prediction

 $t = \{-T \dots 0\}$

 $t = \{1 ... T\}$

Future LiDAR prediction

Future LiDAR groundtruth

 $t = \{1 ... T\}$

4D Occupancy Forecasting w/ differentiable volumetric rendering

 $t = \{-T \dots 0\}$

 $t = \{1 ... T\}$

using known extrinsics and intrinsics

$$t = \{1 \dots T\}$$
 $t = \{1 \dots T\}$

Qualitative results on nuScenes

S2Net

Groundtruth

SPFNet

Non-learned raytracing baseline is much stronger than SOTA. We improve upon it by recovering dynamic/evolving scene elements.

Raytracing

Ours (Point clouds) Ours (Occupancy)

Evaluation protocol

Future Point Clouds

Groundtruth Point Clouds

Chamfer Distance

Traditional setup

Evaluation protocol

Future Point Clouds

Future Scene Representation

Ray queries (b)

Groundtruth Point Clouds

Chamfer Distance

Traditional setup

Proposed setup

Evaluation on nuScenes Significant performance improvement upon SOTAs

Metrics in-line with qualitative results: SOTA << Raytracing < Ours

Potential applications: Changing intrinsics

Learnt Future Occupancy

nuScenes LiDAR

KITTI LiDAR

Use predicted occupancy to render point clouds for different sensors.

Evaluation on KITTI-Odometry Significant performance improvement upon SOTA

Multi-domain (AV2 + KITTI-O) training does remarkably better than SOTA

Evaluation on KITTI-Odometry Significant performance improvement upon SOTA

Multi-domain (AV2 + KITTI-O) training does remarkably better than SOTA

Potential applications: Changing extrinsics

Reference RGB frame, t = 0s

Use predicted occupancy to render dense depth maps from novel views (camera).

Novel-view depth synthesis

- Point cloud forecasting = 4D occupancy forecasting + sensor extrinsics and intrinsics ullet
- Disentanglement results in dramatic improvement, while also opening up cross-sensor applications lacksquare
- Benchmarking protocol should evaluate underlying geometry with rays, not uncorrelated points \bullet

Summary

tarashakhurana/4d-occ-forecasting

