ALSO

Automotive Lidar Self-Supervision by Occupancy Estimation

Alexandre Boulch, Corentin Sautier, Björn Michele, Gilles Puy, Renaud Marlet

ALSO: Automotive Lidar Self-Supervision by Occupancy Estimation

Pretext task: scene reconstruction

- Implicit representation of surface (latent vectors)
- Occupancy decoding

ALSO: Automotive Lidar Self-Supervision by Occupancy Estimation

Context reconstruction vs local reconstruction

POCO: Point Convolution for Surface Reconstruction, A. Boulch, R. Marlet, CVPR 2022

Context reconstruction vs local reconstruction

Local reconstruction [POCO head]

- everywhere, from features of neighboring points
- \Rightarrow (too) detailed geometry

Context reconstruction [ALSO head]

- of a 1 meter ball, from each single feature point
⇒ rough geometry, more suited for object recognition

POCO: Point Convolution for Surface Reconstruction, A. Boulch, R. Marlet, CVPR 2022

Context reconstruction vs local reconstruction

Local reconstruction [POCO head]

everywhere, from features of neighboring points
⇒ (too) detailed geometry

Context reconstruction [ALSO head]

- of a 1 meter ball, from each single feature point
⇒ rough geometry, more suited for object recognition

POCO: Point Convolution for Surface Reconstruction, A. Boulch, R. Marlet, CVPR 2022

Supervision

Supervision

Supervision

Self-supervised occupancy

Query point generation

Along lidar lines of sight

Empty queries: from sensor to observed point

Full queries: just behind the point (max distance δ = 0.1 m)

Self-supervision

valeo.ai

Downstream tasks

Semantic segmentation

- remove occupancy head
- add a single linear layer
- finetune the whole network

Semantic segmentation

1% annotated training data

Downstream tasks 3D Detection

Pretraining for downstream tasks

Input points

Latents on BEV grid

Pretraining for downstream tasks

Pretraining for downstream tasks

3D Detection

KITTI Benchmark

valeo.ai

Conclusion

Semantic labels on top of estimated occupancy (nuScenes and SemanticKITTI)

Scene reconstruction as a self-supervised pretext task

Single stream ⇒ memory efficient Latent space structure not suited for direct linear probing

Personal page: <u>www.boulch.eu</u>

Github: https://github.com/valeoai/ALSO

Project page: <u>https://boulch.eu/publications/2023_cvpr_also</u>

Team publications: https://valeoai.github.io/blog/publications/

