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Test your own Text to Image model



Risks of Large-Scale Datasets

"Feeding AI systems on the world’s beauty, ugliness, and 
cruelty, but expecting it to reflect only the beauty is a 
fantasy“  

Birhane et al. Multimodal datasets: misogyny, pornography, 
and malignant stereotypes. (2021) 



Text-to-Image Diffusion
Large Scale Data



LAION-5B - Stable Diffusion’s Training Data
Large-scale datasets reflect ugliness
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Stable Diffusion
Text-to-Image models reflect ugliness
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Even the weakest link to womanhood can return pornographic imagery 



Stable Diffusion
Text-to-Image models reflect the dataset’s ugliness



Safe Stable Diffusion
Mitigating inappropriate content generation

  Code



Instructing Diffusion Models on Safety
Safety and Semantic Guidance
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SEGA: Instructing Diffusion using Semantic Dimensions 
Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek,

Patrick Schramowski, Kristian Kersting.

https://arxiv.org/abs/2301.12247

“A portrait of a king“

Semantic Guidance
Interacting with Concepts

https://arxiv.org/abs/2301.12247
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Latent Diffusion - Classifier Free Guidance
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Demo: Safe Stable Diffusion 
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Risks and Promises
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“Even the weakest link to womanhood or some 
aspect of what is traditionally conceived as 
feminine returned pornographic imagery.“ 
Birhane et al. (2021)

Percentage of explicitly nude content generated for prompts 
varied by country name 


Stable Diffusion
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Dataset

Inappropriate image prompts (I2P)

4.7k real user prompts 
across 7 categories

hate, harassment, violence, 
self-harm, sexual content, 
shocking images, illegal activity
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Conclusion
• Large T2I models suffer from inappropriate degeneration and exhibit 

associated ethnic biases.

• SLD provides flexible mitigations based on textual input.

• It requires no finetuning and can reduce inappropriate content in any text-
to-image model, which applies classifier-free guidance

Code Demo Test your own diffusion model

Poster session: THU-PM-183


