Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR

Ayan Kumar Bhunia^a

Subhadeep Koley ^{a,b}

Pinaki Nath Chowdhury ^{a,b}

Soumitri Chattopadhyay^{*}

a. SketchX, CVSSP, University of Surrey, United Kingdom b. iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

* Interned with SketchX

Paper Tag: TUE-PM-262

Overview

- We present a stronger baseline for fine-grained SBIR that addresses *two critical issues* facing the community –
 (i) inadequate latent space feature separation and (ii) insufficient availability of paired sketches.
- Specifically, we propose:
 - An *intra-modal triplet objective* in each modality that explicitly *enforces instance separation*
 - A novel paradigm to *leverage unlabeled data* in FG-SBIR by *distilling knowledge from unlabelled photos*
 - A modified **PVT encoder** with a *learnable distillation token* that caters to the end-to-end learning approach.

Our work overshoots prior state-of-the-arts by ≈11% and also yields satisfactory results on generalising to new classes, establishing itself as a *stronger baseline* for future fine-grained SBIR works.

Sketch-based Image Retrieval – Category-level to Fine-grained

Motivation

Issues with existing fine-grained SBIR literature:

- the gold standard triplet loss does *not* enforce holistic latent space geometry
- Insufficient availability of *paired sketches* for SBIR training

- We address the first issue by employing an intra-modal triplet objective in both modalities, which brings matched sketches closer as well as pushes different sketch/photo instances farther apart
- For the second issue, we adopt **knowledge distillation** we train a model on *unlabelled photos* only *via an intra-modal triplet loss*, then **distill** its instance-wise discriminative knowledge to an *FG-SBIR model*.

Pilot Study

- Training stability
 - Baseline FG-SBIR shows *notorious instability* during training
 - For this, we introduce EMA in our learning paradigm which *imparts a stabilising effect* (see adjacent figure)
- Training dataset size
 - Our stronger baseline effectively utilises unlabeled photos and matches performance of existing baseline using half the training data (fig. bottom left)
- Unseen classes (cross-category)
 - Performance drop of our model on unseen classes is less compared to baseline, showing greater generalisability across categories (fig. bottom right)

Framework – Stronger FG-SBIR baseline model

- Vision Transformer backbone
 - **PVT** encoder ensures global receptive fields
- Cross-modal and Intra-modal losses
 - Cross-modal:
 - Traditional sketch-photo triplet loss

 $\mathcal{L}_{\text{Tri}}^{\text{CM}} = \max\{0, m_{\text{CM}} + \delta(f_s, f_p) - \delta(f_s, f_n)\}$

• Intra-modal:

- Separates visually similar *sketch/photo instances*

 $\mathcal{L}_{\text{Tri}}^{\text{IM}_p} = \max\{0, m_{\text{IM}}^p + \delta(f_p, f_{p^t}) - \delta(f_p, f_n)\}$ $\mathcal{L}_{\text{Tri}}^{\text{IM}_s} = \max\{0, m_{\text{IM}}^s + \delta(f_s, f_{s^+}) - \delta(f_s, f_{s^-})\}$

- Exponential Moving Average
 - **EMA** enhances training stability

$$\theta_{\text{EMA}}^{t} = \beta \theta_{\text{EMA}}^{t-1} + (1-\beta)\theta^{t}$$
$$\mathcal{L}_{Trn} = \mathcal{L}_{\text{Tri}}^{\text{CM}} + \lambda_{1} \mathcal{L}_{\text{Tri}}^{\text{IM}_{p}} + \lambda_{2} \mathcal{L}_{\text{Tri}}^{\text{IM}_{s}}$$

Framework – KD for unlabeled photos

- Knowledge distillation paradigm
- Knowledge transfer from a *photo instance discriminator* **teacher** to a *FG-SBIR* **student** model for cross-modal retrieval.
- **PVT** backbone: *Learnable distillation token* for knowledge transfer from teacher to student
- Teacher pre-training: *Intra-modal photo loss* (unlabelled photos)
- Student FG-SBIR training: Nearest neighbour pairwise distance based distillation

$$\mathcal{L}_{\text{Disc}}^{\phi} = \mathcal{L}_{Trn}^{L} + \lambda_{3} \mathcal{L}_{\text{Tri}}^{U} \qquad \mathcal{S}_{\tau} (-\mathbf{D}_{p^{i}}^{\Omega})_{r^{j}} = \frac{\exp(-\delta(f_{p^{i}}^{\Omega}, f_{p^{r_{k}}}^{\Omega})/\tau)}{\sum_{k=1}^{r_{K}} \exp(-\delta(f_{p^{i}}^{\Omega}, f_{p^{r_{k}}}^{\Omega})/\tau)} \qquad \mathcal{L}_{\text{KL}}^{p_{U}} = KL(\mathcal{S}_{\tau}(-\mathbf{D}_{p^{i}}^{\Omega}) \parallel \mathcal{S}_{\tau}(-\mathbf{D}_{p^{i}}^{\phi})) \\ \mathcal{L}_{\text{Dist}}^{\phi} = \mathcal{L}_{\text{KL}}^{p_{L}} + \lambda_{4} \mathcal{L}_{\text{KL}}^{s_{L}} + \lambda_{5} \mathcal{L}_{\text{KL}}^{p_{U}} \qquad \mathcal{L}_{trn}^{\phi} = \mathcal{L}_{\text{Disc}}^{\phi} + \lambda_{6} \mathcal{L}_{\text{Dist}}^{\phi}$$

Experiments

- Datasets used:
 - QMUL-Chair-V2^[1] 2000 (400) sketch (photo) pairs
 - QMUL-Shoe-V2^[1] 6730 (2000) sketch (photo) pairs
 - Sketchy (Extended)^[2] 73K sketches across 125 categories.
 - UT-Zappos50K^[3] 50K unlabeled photos

• Competitors:

- SOTA fine-grained SBIR methods Triplet-SN^[2], HOLEF-SN^[4], Jigsaw-SN^[5], OnTheFly^[6], StyleMeUp^[7]
- SOTA methods augmented with our intra-modal triplet objectives (SOTA++)
- Architectural variants (CNN and ViT alternatives)
- Alternative baselines using unlabeled data for training

• Evaluation protocol and metric:

• Acc.@q i.e. percentage of sketches having true matched photo in the top-q list

^[1] Qian Yu, et al. Sketch me that shoe. In CVPR, 2016.

^[2] Patsorn Sangkloy, et al. The sketchy database: learning to retrieve badly drawn bunnies. In ACM TOG, 2016.

^[3] Aron Yuand, and Kristen Grauman. Fine-grained visual comparisons with local learning. In CVPR, 2014.

^[4] Jifei Song, et al. Deep spatial-semantic attention for fine grained sketch-based image retrieval. In ICCV, 2017.

^[5] Kaiyue Pang, et al. Solving mixed-modal jigsaw puzzle for fine-grained sketch-based image retrieval. In CVPR, 2020.

^[6] Ayan Kumar Bhunia, et al. Sketch less for more: On-the-fly fine-grained sketch-based image retrieval. In CVPR, 2020.

^[7] Aneeshan Sain, et al. Stylemeup: Towards style-agnostic sketch-based image retrieval. In CVPR, 2021.

Quantitative Results:

- Table on right shows results obtained on the ChairV2 and ShoeV2 datasets.
- Table below shows comparative results on Sketchy database.

Methods	Sketchy (%)		Methods	Sketchy (%)		
	Top-1	Top-5		Top-1	Top-5	
Triplet-SN ^[1] HOLEF-SN ^[2] Jigsaw-SN ^[3] OnTheFly ^[4] StyleMeUp ^[5]	15.32 16.71 16.74 04.76 19.62	34.15 35.92 36.37 07.81 39.72	B-InceptionV3 B-VGG-16 B-ViT B-SWIN B-CoAtNet	28.71 18.84 7.63 32.14 33.63	71.56 38.63 11.23 57.68 59.31	
Triplet-SN-ours HOLEF-SN-ours Jigsaw-SN-ours OnTheFly-ours StyleMeUp-ours	19.48 20.23 21.45 07.28 22.95	37.91 38.61 39.56 12.14 45.84	B-Edge-Pretrain B-Edge2Sketch B-Regress B-RKD B-PKT	34.98 35.81 36.33 37.02 38.62	61.32 61.74 62.31 63.02 63.94	
Ours-Strong	34.72	65.10	Ours-Full	38.54	71.52	

[1] Sangkloy et al. The sketchy database: learning to retrieve badly drawn bunnies. In ACM TOG, 2016.

[2] Song et al. Deep spatial-semantic attention for fine grained sketch-based image retrieval. In ICCV, 2017.

[3] Pang et al. Solving mixed-modal jigsaw puzzle for fine-grained sketch-based image retrieval. In CVPR, 2020.

[4] Bhunia et al. Sketch less for more: On-the-fly fine-grained sketch-based image retrieval. In CVPR, 2020.

[5] Sain et al. Stylemeup: Towards style-agnostic sketch-based image retrieval. In CVPR, 2021.

[6] Bhunia et al. More photos are all you need: Semi-supervised learning for fine-grained sketch based image retrieval. In CVPR, 2021.

		Methods	Chair-	Chair-V2 (%)		Shoe-V2 (%)	
			Top-1	Top-10	Top-1	Top-10	
		Triplet-SN ^[1]	47.45	84.32	28.71	71.56	
		HOLEF-SN ^[2]	50.41	86.31	31.24	74.61	
∠ ⊥	5	Jigsaw-SN[3]	53.41	87.56	33.51	76.86	
Č	2	$OnTheFly^{[4]}$	54.54	88.61	34.10	78.82	
0	2	StyleMeUp ^[5]	59.86	89.64	36.47	81.83	
		Semi-sup-SN ^[6]	60.20	90.81	39.12	85.21	
		Triplet-SN-ours	53.48	87.91	33.78	76.84	
	+	HOLEF-SN-ours	55.23	88.61	35.41	78.85	
	A+	Jigsaw-SN-ours	58.51	88.78	37.64	79.78	
	IC	OnTheFly-ours	59.18	89.35	38.62	81.97	
	SC	StyleMeUp-ours	65.85	90.84	40.42	82.94	
line		Semi-sup-SN-ours	66.86	91.12	44.35	86.83	
Basel	B-ResNet-18	48.42	85.62	26.61	70.31		
	B-ResNet-50	47.78	82.34	28.12	70.84		
er	an	B-InceptionV3	55.41	88.21	34.24	78.56	
guo	ari	B-VGG-16	58.23	88.78	35.85	80.92	
tro		B-VGG-19	61.46	89.16	37.28	81.01	
5	one	B-ViT	38.71	72.65	16.28	53.42	
	kb (B-DeIT	56.25	87.72	35.62	79.05	
	acl	B-SWIN	66.34	91.03	40.71	82.57	
	B	B-CvT	68.42	91.21	41.58	83.14	
		B-CoAtNet	69.68	91.78	42.63	83.20	
		Ours-Strong	71.22	92.18	44.18	84.68	
		B-Edge-Pretrain	71.58	90.78	44.62	84.85	
00		B-Edge2Sketch	72.16	91.01	45.18	84.92	
110		B-Regress	72.65	91.32	45.45	85.01	
40	lal	B-RKD	73.02	91.78	46.18	85.12	
2		B-PKT	73.45	91.89	46.66	85.47	
-	-	Ours-Full	74.68	92.79	48.35	85.62	

Ablative Studies:

Туре	\mathcal{L}_{Tri}^{CM}	\mathcal{L}_{Tri}^{IM}	EMA	$\mathcal{L}_{ ext{KL}}^{p_U}$	$\mathcal{L}_{ ext{KL}}^{p_L}$	$\mathcal{L}_{ ext{KL}}^{s_L}$	Top-1 (%)
Ι	\checkmark	-	-	\checkmark	\checkmark	\checkmark	43.28
Π	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	45.39
III	\checkmark	\checkmark	\checkmark	\checkmark	-	-	46.50
IV	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	47.21
Ours-Full	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	48.35

Ablation study of loss function on the QMUL-ShoeV2 dataset.

Cross-category generalisation on Sketchy database.

Methods	Sketchy (%)		Methods	Sketchy (%)	
	Top-1	Top-5		Top-1	Top-5
Jigsaw-SN ^[1] Adaptive-SN ^[2] CC-Gen ^[3]	23.16 32.71 22.73	44.63 53.42 42.32	B-Edge-Pretrain B-Edge2Sketch Ours-Full	24.81 25.74 30.24	46.24 48.36 51.65

[1] Pang et al. Solving mixed-modal jigsaw puzzle for fine-grained sketch-based image retrieval. In CVPR, 2020.

[2] Bhunia et al. Adaptive fine-grained sketch-based image retrieval. In ECCV, 2022.

[3] Pang et al. Generalising fine-grained sketch-based image retrieval. In CVPR, 2019.

aneeshan95.github.io/Sketch_PVT