

Computationally Budgeted Continual Learning What Does Matter?

TUE-AM-352

The Memory Dilemma

Most prior art restrict memory because:

Cost

Privacy

The Memory Dilemma

Does restricting the memory really address cost concerns?

Ref.	Dataset	Ordering	Memory	Cost	Iters	Cost
[9]	CIFAR10	Cls Inc	1-25MB	0.05¢	250K-375K	20\$
[44] [19,25]	CIFAR100	Cls Inc	10 MB	0.02¢	50K 125K	8\$ 15\$
[9]	TinyImageNet	Cls Inc	5-20 MB	0.04¢	350K-500K	25\$
[19,25]	ImageNet100	Cls Inc	0.3-1 GB	2¢	100K	50\$
[19,25]	ImageNet1K	Cls Inc	33GB	66¢	1 M	500\$
[29]	CLEAR	Dist Shift	0.4-1.2GB	2¢	300K	100\$
[24]	ResNet50 (bs=256)		22GB			
Ours	CGLM ImageNet2K	Dist Shift ClsInc, DataInc	90GB 400GB	2\$ 10\$	2K 8K	10\$ 35\$

Cost of Compute >> Cost of Storage

The Privacy Dilemma

Does restricting the memory size really address privacy concerns?

Model Inversion

Original Image

Deep Networks *memorize* information

Privacy needs Forgetting Incompatible with Continual Learning

Fredrikson, Matt et al. "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures." Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (2015): n. pag.

Our Key Contribution: A New Setup

Reduce computational costs

 $\rightarrow \text{Storage is (virtually) free} \\ \text{But} \\ \rightarrow \text{GPUs are expensive}$

Dir	Reference	Applicability			Components		
DII.	Reference	(our setup)	Distillation	MemUpdate	MemRetrieve	FC Correction	Others
	Naiva			Dandom	Dondom		
		<u> </u>	-	Kandom	Kandom	-	-
	iCARL [44]	√	BCE	Herding	Random	-	NCM
<u>io</u>	LUCIR [25]	\checkmark	Cosine	Herding	MargRank	CosFC	NCM
lati	PODNet [19]	\checkmark	POD	Herding	Random	LSC	Imprint,NCM
<u>1</u>	DER [9]	\checkmark	MSE	Reservoir	Random	-	-
Dis	$CO^{2}L[12]$	×	IRD	Random	Random	Asym.SupCon	-
	SCR [35]	\checkmark	-	Reservoir	Random	SupCon	NCM
	TinyER [15]	\checkmark	-	FIFO,KMeans,Reservoir	-	-	-
	GSS [5]	×	-	GSS	Random	-	-
	MIR [3]	×	-	Reservoir	MIR	-	-
ampling	GDumb [40]	\checkmark	-	Balanced	Random	-	MemOnly
	Mnemonics [31]	×	-	Mnemonics	-	-	BalFineTune
	OCS [57]	×	-	OCS	Random	-	-
	InfoRS [49]	×	MSE	InfoRS	Random	-	-
8	RMM [30]	×	-	RMM	-	-	-
	ASER [48]	×	-	\mathbf{SV}	ASV	-	-
	RM [6]	\checkmark	-	Uncertainty	Random	-	AutoDA
	CLIB [27]	×	-	Max Loss	Random	-	MemOnly,AdaLR
	BiC [53]	×	CrossEnt	Random	Random	BiC	-
yer	WA [60]	×	CrossEnt	Random	Random	WA	-
C Lay	SS-IL [2]	×	TKD	Random	Balanced	SS	-
	CoPE [17]	\checkmark	-	Balanced	Random	PPPLoss	-
щ	ACE [10]	\checkmark	-	Reservoir	Random	ACE	-
	_						

Three Principal Directions Reduce effect of distribution shift from past data by:

- Distillation: Enforce Output Similarity with Old Models
- Sampling Old Data: Create representative coreset of past knowledge
- Correcting FC Layer: Posits knowledge in representations far less affected, but classifier gets worse

Key Contributions

Dir.	Reference	Applicability (our setup)	Distillation	MemUpdate	Components MemRetrieve	FC Correction	Others
	Naive	\checkmark	-	Random	Random	-	-
	iCARL [44]	\checkmark	BCE	Herding	Random	-	NCM
5	LUCIR [25]	\checkmark	Cosine	Herding	MargRank	CosFC	NCM
ati	PODNet [19]	\checkmark	POD	Herding	Random	LSC	Imprint,NCM
E:	DER [9]	\checkmark	MSE	Reservoir	Random	-	-
Dis	$CO^{2}L[12]$	×	IRD	Random	Random	Asym.SupCon	-
	SCR [35]	\checkmark	-	Reservoir	Random	SupCon	NCM
	TinyER [15]	\checkmark	-	FIFO,KMeans,Reservoir	-	-	-
	GSS [5]	×	-	GSS	Random	-	-
	MIR [3]	×	-	Reservoir	MIR	-	-
	GDumb [40]	\checkmark	-	Balanced	Random	-	MemOnly
ing	Mnemonics [31]	×	-	Mnemonics	-	-	BalFineTune
ld.	OCS [57]	×	-	OCS	Random	-	-
San	InfoRS [49]	×	MSE	InfoRS	Random	-	-
•1	RMM [30]	×	-	RMM	-	-	-
	ASER [48]	×	-	SV	ASV	-	-
	RM [6]	\checkmark	-	Uncertainty	Random	-	AutoDA
	CLIB [27]	×	-	Max Loss	Random	-	MemOnly,AdaLR
	BiC [53]	×	CrossEnt	Random	Random	BiC	-
ye	WA [60]	×	CrossEnt	Random	Random	WA	-
La	SS-IL [2]	×	TKD	Random	Balanced	SS	-
ĥ	CoPE [17]	\checkmark	-	Balanced	Random	PPPLoss	-
-	ACE [10]	\checkmark	-	Reservoir	Random	ACE	-

Three Principal Directions

Reduce effect of distribution shift from past data by:

- Distillation: Enforce Output Similarity with Old Models
- Sampling Old Data: Create representative coreset of past knowledge
- Correcting FC Layer: Posits knowledge in representations far less affected, but classifier gets worse

Conclusions

Testing across streams with new classes, new data & across time says.

- I. All three algorithmic directions fail
 - I. when computational costs are equalized
- **II.** Baseline: Sample class-balanced subset and train using all budget.
 - I. Best across major past directions
- III. Conclusion consistent across:
 - I. Varying computational budgets
 - II. Varying stream sizes and timesteps

Computationally Budgeted Continual Learning What Does Matter?

TUE-AM-352

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

Learn a function $f_{ heta}: \mathcal{X}
ightarrow \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

 $1. \ \mathcal{S} ext{ reveals a set of image-label pairs} iggl\{ (x_i^t, y_i^t) \}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t} iggr\}$

 $\mathcal{D}_{j \leq t}$ denotes a varying distribution

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

2. Memory is updated to $\mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

- 2. Memory is updated to $\mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$
- 3. Continual learner updates θ_t to θ_{t+1}

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, ..., \infty\}$ where at every step:

Prior art limits access to past memory

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

 $2. ext{ Memory is updated to } \mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$

3. Continual learner updates θ_t to θ_{t+1}

The Memory Dilemma

Most prior art restrict memory because:

Cost

Privacy

The Memory Dilemma: Cost

Does restricting the memory really address cost concerns?

Ref.	Dataset	Ordering	Memory	Cost	Iters	Cost
[9]	CIFAR10	Cls Inc	1-25MB	0.05¢	250K-375K	20\$
[44] [19,25]	CIFAR100	Cls Inc	10 MB	0.02¢	50K 125K	8\$ 15\$
[9]	TinyImageNet	Cls Inc	5-20 MB	0.04¢	350K-500K	25\$
[19, 25]	ImageNet100	Cls Inc	0.3-1 GB	2¢	100K	50\$
[19, 25]	ImageNet1K	Cls Inc	33GB	66¢	1 M	500\$
[29]	CLEAR	Dist Shift	0.4-1.2GB	2¢	300K	100\$
[24]	ResNet50 (bs=256)		22GB			
0.1.45	CGLM	Dist Shift	90GB	2\$	2K	10\$
Ours	ImageNet2K	ClsInc, DataInc	400GB	10\$	8K	35\$

Cost of Compute >> Cost of Storage

The Memory Dilemma: Privacy

Does restricting the memory size really address privacy concerns?

Model Inversion

Original Image

Deep Networks *memorize* information

Privacy needs Forgetting Incompatible with Continual Learning

Learn a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, ..., \infty\}$ where at every step:

Prior art limits access to past memory

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

2. Memory is updated to $\mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$

3. Continual learner updates θ_t to θ_{t+1}

Our Proposal: Budgeted Continual Learning

Learn a function $f_{ heta}: \mathcal{X}
ightarrow \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

2. Memory is updated to $\mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$

3. Continual learner updates θ_t to θ_{t+1} spending a computational budget \mathcal{C}_t

Restrict compute

Our Proposal: Budgeted Continual Learning

Learn a function $f_{ heta}: \mathcal{X} \to \mathcal{Y}$ from a stream \mathcal{S} revealing data sequentially

over steps $t \in \{1, 2, \dots, \infty\}$ where at every step:

Limited computation implicitly imposes memory restrictions

Restrict compute

 $1.~\mathcal{S} ext{ reveals a set of image-label pairs } \{(x_i^t, y_i^t)\}_{i=1}^{n_t} \sim \mathcal{D}_{j \leq t}$

 $2. ext{ Memory is updated to } \mathcal{T}_t = \cup_{r=1}^t \{(x_i^r, y_i^r)\}_{i=1}^{n_r}$

3. Continual learner updates θ_t to θ_{t+1} spending a computational budget \mathcal{C}_t

Limited Computation: Practicals

ImageNet2K: ImageNet1K + 1.2M samples (1K classes) from ImageNet21K
Start: Pretrained model & ImageNet1K (in memory) -> Learn new 1K classes

Limited Computation

CGLM: Transfer learning from ImageNet1K pretrained model

Constructing the Streams

We consider three types of streaming settings:

- Class Incremental: Data ordered class wise
- Data Incremental: Data ordered by a random shuffling
- Time Incremental: Data ordered by the upload time to a server (natural)

Dir.	Reference	Applicability			Components		
		(our setup)	Distillation	MemUpdate	MemRetrieve	FC Correction	Others
	Naive	\checkmark	-	Random	Random	-	-
	iCARL [44]	\checkmark	BCE	Herding	Random	-	NCM
Ю	LUCIR [25]	\checkmark	Cosine	Herding	MargRank	CosFC	NCM
ati	PODNet [19]	\checkmark	POD	Herding	Random	LSC	Imprint,NCM
til	DER [9]	\checkmark	MSE	Reservoir	Random	-	-
Dis	$CO^{2}L[12]$	×	IRD	Random	Random	Asym.SupCon	-
—	SCR [35]	\checkmark	-	Reservoir	Random	SupCon	NCM
	TinvER [15]	\checkmark	-	FIFO,KMeans,Reservoir	-	-	-
	GSS [5]	×	-	GSS	Random	-	-
	MIR [3]	×	-	Reservoir	MIR	-	-
	GDumb [40]	\checkmark	-	Balanced	Random	-	MemOnly
gu	Mnemonics [31]	×	-	Mnemonics	-	-	BalFineTune
ld	OCS [57]	×	-	OCS	Random	-	-
an	InfoRS [49]	×	MSE	InfoRS	Random	-	-
S	RMM [30]	×	-	RMM	-	-	-
	ASER [48]	×	-	SV	ASV	-	-
	RM [6]	\checkmark	-	Uncertainty	Random	-	AutoDA
	CLIB [27]	×	-	Max Loss	Random	-	MemOnly,AdaLR
	BiC [53]	×	CrossEnt	Random	Random	BiC	-
yer	WA [60]	×	CrossEnt	Random	Random	WA	-
La	SS-IL [2]	×	TKD	Random	Balanced	SS	-
Ų.	CoPE [17]	\checkmark	-	Balanced	Random	PPPLoss	-
щ	ACE [10]	\checkmark	-	Reservoir	Random	ACE	-

Three Principal Directions Reduce effect of distribution shift from past data by:

- Distillation: Enforce Output Similarity with Old Models
- Sampling Old Data: Create representative coreset of past knowledge
- Correcting FC Layer: Posits knowledge in representations far less affected, but classifier gets worse

CGLM (Budget: 2000 Iterations): Method and ERM-Naive

ERM-Naive: Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

CGLM (Budget: 2000 Iterations): Method and ERM-Naive

ERM-Naive: Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

CGLM (Budget: 2000 Iterations): Method and ERM-Naive

ERM-Naive: Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Conclusion: Do not spend computational budget on expensive sampling. Train your model with the budget!

CGLM (Budget: 2000 Iterations): Method and ERM-Naive

ERM-Naive: Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Does Distillation Matter?

Does FC Layer Correction Matter?

CGLM (Budget: 2000 Iterations): Naive with FC Correction Methods

Sensitivity Analysis: Compute Budget

Sensitivity Analysis: Compute Budget

Conclusions

- Existing CL algorithms (*sampling, distillation, and FC corrections*) fail in a compute budgeted setup
- Naive baseline of experience replay outperforms all considered CL methods
- Above conclusions persistent across:

(a) computational budgets (b) varying number of time steps

Thank You!

Questions?