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The Memory Dilemma

Most prior art restrict memory because:

Cost

Privacy
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The Memory Dilemma

Cost of Compute >> Cost of Storage

Does restricting the memory really address cost concerns?
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The Privacy Dilemma

Fredrikson, Matt et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.” Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications 
Security (2015): n. pag.

Model Inversion Original Image

Deep Networks memorize information

Privacy needs Forgetting

Incompatible with Continual Learning

Does restricting the memory size really address privacy concerns?



Key Contributions

Our Key Contribution: A New Setup
Reduce computational costs

→ Storage is (virtually) free

But

→ GPUs are expensive



Key Contributions

Three Principal Directions
Reduce effect of distribution shift from past data by:

➢ Distillation: Enforce Output Similarity with Old Models

➢ Sampling Old Data: Create representative coreset of 
past knowledge

➢ Correcting FC Layer: Posits knowledge in 
representations far less affected, but classifier gets 
worse
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Conclusions

Testing across streams with new classes, new data & across time says.

I. All three algorithmic directions fail

I. when computational costs are equalized

II. Baseline: Sample class-balanced subset and train using all budget.

I. Best across major past directions

III. Conclusion consistent across:

I. Varying computational budgets

II. Varying stream sizes and timesteps
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Learn a function                          from a stream      revealing data sequentially 

over steps                                   where at every step:                      

Continual Learning: A Recap
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denotes a varying distribution
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Learn a function                          from a stream      revealing data sequentially 

over steps                                   where at every step:                      

Continual Learning: A Recap

Prior art limits access to past memory
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The Memory Dilemma

Most prior art restrict memory because:

Cost

Privacy
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The Memory Dilemma: Cost

Cost of Compute >> Cost of Storage

Does restricting the memory really address cost concerns?
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The Memory Dilemma: Privacy

Does restricting the memory size really address privacy concerns?

Model Inversion Original Image

Deep Networks memorize information

Privacy needs Forgetting

Incompatible with Continual Learning
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Learn a function                          from a stream      revealing data sequentially 

over steps                                   where at every step:                      

Continual Learning: A Recap

Prior art limits access to past memory
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Learn a function                          from a stream      revealing data sequentially 

over steps                                   where at every step:                      

Our Proposal: Budgeted Continual Learning

Restrict compute
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Learn a function                          from a stream      revealing data sequentially 

over steps                                   where at every step:                      

Our Proposal: Budgeted Continual Learning

Restrict compute

Limited computation implicitly 

imposes memory restrictions
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Limited Computation: Practicals

Our Experiments

ImageNet2K: ImageNet1K + 1.2M samples (1K classes) from ImageNet21K
Start: Pretrained model & ImageNet1K (in memory) -> Learn new 1K classes
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Limited Computation

CGLM: Transfer learning from ImageNet1K pretrained model
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Constructing the Streams

We consider three types of streaming settings:

• Class Incremental: Data ordered class wise

• Data Incremental: Data ordered by a random shuffling

• Time Incremental: Data ordered by the upload time to a server (natural)



Key Contributions

Three Principal Directions
Reduce effect of distribution shift from past data by:

➢ Distillation: Enforce Output Similarity with Old Models

➢ Sampling Old Data: Create representative coreset of 
past knowledge

➢ Correcting FC Layer: Posits knowledge in 
representations far less affected, but classifier gets 
worse
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Do Sampling Strategies Matter?

CGLM (Budget: 2000 Iterations): Method and ERM-Naive
ERM-Naive:Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Most cheap sampling 
strategies perform similarly
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Do Sampling Strategies Matter?

CGLM (Budget: 2000 Iterations): Method and ERM-Naive
ERM-Naive:Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Expensive sampling strategies waste 
compute, lowering performance
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Do Sampling Strategies Matter?

CGLM (Budget: 2000 Iterations): Method and ERM-Naive
ERM-Naive:Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Conclusion: Do not spend computational budget on expensive sampling. Train your model with the budget!
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Do Sampling Strategies Matter?

CGLM (Budget: 2000 Iterations): Method and ERM-Naive
ERM-Naive:Trains a model from scratch given the data and cumulative compute budget until current timestep (empirical upper bound)

Naive
(Not to be confused with ERM-Naive)
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Does Distillation Matter?

CGLM (Budget: 2000 Iterations): Naive with Distillation Methods

Distillation has overhead computational costs, better to simply train a model
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Does FC Layer Correction Matter?

CGLM (Budget: 2000 Iterations): Naive with FC Correction Methods

FC Corrections perform equal to or worse than no FC corrections (Naive) baseline
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Sensitivity Analysis: Compute Budget

 800 Iterations                  8000 Iterations

The gap compared to uniform reduces as the computation is abundant 
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Sensitivity Analysis: Compute Budget

 800 Iterations                  8000 Iterations  16000 Iterations

However, methods simply converge instead of outperforming uniform with more compute
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Conclusions

• Existing CL algorithms (sampling, distillation, and FC corrections) fail in a compute budgeted setup

• Naive baseline of experience replay outperforms all considered CL methods

• Above conclusions persistent across:

(a) computational budgets (b) varying number of time steps



Thank You!

Questions?
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