3Mformer: Multi-order Multi-mode Transformer for Skeletal Action Recognition

Lei Wang^{1,2} Piotr Koniusz^{2,1}

¹Australian National University ²Data61/CSIRO

May 28, 2023

ANU & Data61/CSIRO

3Mformer: Multi-order Multi-mode Transformer for Skeletal Action Recognition Lei Wang@data61.csiro.au^{1,2} PlotK.Koniusz@data61.csiro.au^{2,1} ¹Australian National University ²Data61/CSIRO

Wang & Koniusz

ANU & Data61/CSIR0

1ay 28, 2023

2/8

Motivation

- GCN-based
 - represent human body joints based on physical connectivity
 - limited receptive fields / one- or few-hop neighbourhood aggregation
 - ignore the dependency between body joints non-connected by body parts
- Human actions are associated with interaction groups of skeletal joints
 - the impact of groups of joints on each action differs
- Inspired by our tensor representations¹:
 - sequence compatibility kernel (SCK) & dynamics compatibility kernel (DCK)
 - compactly capture complex interplay
 - operate on subsequences / capture the local-global interplay of correlations
 - incorporate multi-modal inputs

¹Koniusz, P., Wang, L., & Cherian, A. (2021). Tensor representations for action recognition. *IEEE TPAMI*, 44(2), 648-665.

Wang & Koniusz

ANU & Data61/CSIRO

May 28, 2023

3/8

Motivation (cont.)

We propose to:

- use skeletal hypergraph
- Hypergraph captures higher-order relationships by hyper-edges
- Hyper-edges connect more than two nodes (body joints)

Compared to GCN:

- encodes first-/second-/ higher-order hyper-edges
- set of body joints (nodes)/ edges between pairs of nodes/hyper-edges between triplets of nodes

Concatenating HoT outputs of orders 1 to r across τ^2 blocks is *sub-optimal*.

- #hyper-edges of J joints grows rapidly with order r, *i.e.*, $\binom{J}{i}$ for i = 1, ..., r
- embeddings of the highest order hyper-edges dominate lower orders
- long-range temporal dependencies of features are insufficiently explored

Figure 3: Skeletal graph & hypergraph.

²For brevity, we write that we have au temporal blocks per sequence. In fact, au varies. =

Multi-order Multi-mode Transformer (3Mformer)

Given $\mathcal{M} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_r}$, we perform mode-*m* matricization to obtain $\mathbf{M} \equiv \mathcal{M}_{(m)}^{\top} \in \mathbb{R}^{(I_1 \ldots I_{m-1} I_{m+1} \ldots I_r) \times I_m}$ to form coupled-token.

- Coupled-mode tokens:
 - 'channel-temporal block' (Attention matrix $\mathbf{A}_{\mathsf{MP}} \in \mathbb{R}^{d' \tau \times d' \tau}$)
 - 'channel-body joint' ($\mathbf{A}_{\mathsf{TP}} \in \mathbb{R}^{rd'J \times rd'J}$)
 - 'channel-hyper-edge (any order)' ($\mathbf{A}_{\mathsf{TP}} \in \mathbb{R}^{d'N \times d'N}$ & $N = \sum_{m=1}^{r} {J \choose m}$)
 - \bullet and 'channel-only' ($\mathbf{A}_{\mathsf{MP}}\!\in\!\mathbb{R}^{d'\!\times\!d'})$ pairs

• Coupled-mode Self-Attention (CmSA):

- show diagonal / vertical patterns
- patterns are consistent with the pattens of attention matrices found in standard Transformer, *e.g.*, NLP

Figure 5: Visualization of attention matrices: 'channel-only', 'channel-hyper-edge', 'order-channel-body joint' & 'channel-temporal block' tokens.

イロト 不得 トイヨト イヨト

э

Visualization of 3Mformer

Figure 6: 3Mformer is a two-branch model: (a) $MP \rightarrow TP \&$ (b) $TP \rightarrow MP$. Two basic building modules:

- Multi-order Pooling (MP)
 - combine information flow **block-wise**
 - various coupled-mode tokens help improve results
 - different focus of each attention mechanism
- Temporal block Pooling (TP)
 - each sequence may contains a different number of blocks
 - aggregates via popular pooling, *e.g.*, rank-, first-, second- or higher-order pooling

We also form our **multi-head** CmSA as in standard Transformer.

イロト イヨト イヨト イヨト

Pipeline: further details

Figure 7: Pipeline overview.

- each sequence is split into au temporal blocks $\mathbf{B}_1,...,\mathbf{B}_{ au}$
- each block is embedded by a simple MLP into $\mathbf{X}_1,...,\mathbf{X}_{ au}$
- $\mathbf{X}_1,...,\mathbf{X}_{ au}$ are passed to HoTs $(n\!=\!1,...,r)$ for feature tensors $\mathbf{\Phi}_1,...,\mathbf{\Phi}_{ au}$
- ullet subsequently concatenated by \odot along the hyper-edge mode into tensor $oldsymbol{M}$
- 3Mformer contains two complementary branches: MP→TP & TP→MP
- ullet outputs are concatenated by \odot and passed to the classifier
- MP & TP perform attention with the so-called coupled-mode tokens
- MP contains weighted pooling along hyper-edge mode by learnable matrix H (and H' in another branch).
- TP contains **block-temporal pooling** denoted by $g(\cdot)$ to capture block-temporal order with pooling

Wang & Koniusz

ANU & Data61/CSIRO

Results & Discussions

Figure 8: Single-mode vs. coupled-mode. Table 1: NTU-60, NTU-120 & Kinetics-Skeleton.

	Mathed	Venue	NTU-60		NTU-120		Kinetics-Skeleton	
	memou		X-Sub	X-View	X-Sub	X-Set	Top-1	Top-5
Graph- based	TCN	CVPRW'17					20.3	40.0
	ST-GCN	AAAI'18	81.5	88.3	70.7	73.2	30.7	52.8
	AS-GCN	CVPR'19	86.8	94.2	78.3	79.8	34.8	56.5
	2S-AGCN	CVPR'19	88.5	95.1	82.5	84.2	36.1	58.7
	NAS-GCN	AAAI'20	89.4	95.7	-	-	37.1	60.1
	Sym-GNN	TPAMI'22	90.1	96.4	-	-	37.2	58.1
	Shift-GCN	CVPR'20	90.7	96.5	85.9	87.6	-	-
	MS-G3D	CVPR'20	91.5	96.2	86.9	88.4	38.0	60.9
	CTR-GCN	ICCV'21	92.4	96.8	88.9	90.6	-	-
	InfoGCN	CVPR'22	93.0	97.1	89.8	91.2		-
	PoseConv3D	CVPR'22	94.1	97.1	86.9	90.3	47.7	-
Hypergraph- based	Hyper-GNN	TIP'21	89.5	95.7			37.1	60.0
	DHGCN	CoRR'21	90.7	96.0	86.0	87.9	37.7	60.6
	Selective-HCN	ICMR'22	90.8	96.6	-	-	38.0	61.1
	SD-HGCN	ICONIP'21	90.9	96.7	87.0	88.2	37.4	60.5
	ST-TR	CVIU'21	90.3	96.3	85.1	87.1	38.0	60.5
	MTT	LSP'21	90.8	96.7	86.1	87.6	37.9	61.3
	4s-GSTN	Symmetry'22	91.3	96.6	86.4	88.7	-	-
Transformer-	STST	ACM MM'21	91.9	96.8			38.3	61.2
	3Mformer (with avg-pool, ours)		92.0	97.3	88.0	90.1	43.1	65.2
	3Mformer (with max-pool, ours)		92.1	97.8	-	-	-	-
	3Mformer (with attn-pool, ours)		94.2	98.5	89.7	92.4	45.7	67.6
	3Mformer (with tri-pool, ours)		94.0	98.5	91.2	92.7	47.7	71.9
	3Mformer (with rank-pool, ours)		94.8	98.7	92.0	93.8	48.3	72.3

Discussions:

- Single-mode vs. coupled-mode
- graph-based vs.ours:
 - AS-GCN/2S-AGCN
 - pairwise relationship
 - second-order
 - ours
 - higher-order
 - groups of body joints
 - 2nd-order HoT alone vs. NAS-GCN/Sym-GNN
- hypergraph-based vs.ours:
 - 3rd-order HoT alone vs. Hyper-GNN/SD-HGCN/Selective-HCN

Thank you!